# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from ...utils.env import CONFIG_NAME
from .. import PretrainedModel, register_base_model
from .configuration import (
PPMINILM_PRETRAINED_INIT_CONFIGURATION,
PPMINILM_PRETRAINED_RESOURCE_FILES_MAP,
PPMiniLMConfig,
)
__all__ = [
"PPMiniLMModel",
"PPMiniLMPretrainedModel",
"PPMiniLMForSequenceClassification",
"PPMiniLMForQuestionAnswering",
"PPMiniLMForMultipleChoice",
]
class PPMiniLMEmbeddings(nn.Layer):
r"""
Include embeddings from word, position and token_type embeddings.
"""
def __init__(self, config: PPMiniLMConfig):
super(PPMiniLMEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None, position_ids=None):
if position_ids is None:
# maybe need use shape op to unify static graph and dynamic graph
# seq_length = input_ids.shape[1]
ones = paddle.ones_like(input_ids, dtype="int64")
seq_length = paddle.cumsum(ones, axis=1)
position_ids = seq_length - ones
position_ids.stop_gradient = True
if token_type_ids is None:
token_type_ids = paddle.zeros_like(input_ids, dtype="int64")
input_embedings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = input_embedings + position_embeddings + token_type_embeddings
embeddings = self.layer_norm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class PPMiniLMPooler(nn.Layer):
def __init__(self, config: PPMiniLMConfig):
super(PPMiniLMPooler, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
[文档]class PPMiniLMPretrainedModel(PretrainedModel):
r"""
An abstract class for pretrained PPMiniLM models. It provides PPMiniLM related
`model_config_file`, `pretrained_init_configuration`, `resource_files_names`,
`pretrained_resource_files_map`, `base_model_prefix` for downloading and
loading pretrained models.
Refer to :class:`~paddlenlp.transformers.model_utils.PretrainedModel` for more details.
"""
model_config_file = CONFIG_NAME
config_class = PPMiniLMConfig
resource_files_names = {"model_state": "model_state.pdparams"}
base_model_prefix = "ppminilm"
pretrained_init_configuration = PPMINILM_PRETRAINED_INIT_CONFIGURATION
pretrained_resource_files_map = PPMINILM_PRETRAINED_RESOURCE_FILES_MAP
def _init_weights(self, layer):
"""Initialization hook"""
if isinstance(layer, (nn.Linear, nn.Embedding)):
# only support dygraph, use truncated_normal and make it inplace
# and configurable later
if isinstance(layer.weight, paddle.Tensor):
layer.weight.set_value(
paddle.tensor.normal(
mean=0.0,
std=self.config.initializer_range,
shape=layer.weight.shape,
)
)
elif isinstance(layer, nn.LayerNorm):
layer._epsilon = self.config.layer_norm_eps
[文档]@register_base_model
class PPMiniLMModel(PPMiniLMPretrainedModel):
r"""
The bare PPMiniLM Model transformer outputting raw hidden-states.
This model inherits from :class:`~paddlenlp.transformers.model_utils.PretrainedModel`.
Refer to the superclass documentation for the generic methods.
This model is also a Paddle `paddle.nn.Layer <https://www.paddlepaddle.org.cn/documentation
/docs/en/api/paddle/fluid/dygraph/layers/Layer_en.html>`__ subclass. Use it as a regular Paddle Layer
and refer to the Paddle documentation for all matter related to general usage and behavior.
Args:
config (:class:`PPMiniLMConfig`):
An instance of PPMiniLMConfig used to construct PPMiniLMModel.
"""
def __init__(self, config: PPMiniLMConfig):
super(PPMiniLMModel, self).__init__(config)
self.pad_token_id = config.pad_token_id
self.embeddings = PPMiniLMEmbeddings(config)
encoder_layer = nn.TransformerEncoderLayer(
config.hidden_size,
config.num_attention_heads,
config.intermediate_size,
dropout=config.hidden_dropout_prob,
activation=config.hidden_act,
attn_dropout=config.attention_probs_dropout_prob,
act_dropout=0.0,
)
self.encoder = nn.TransformerEncoder(encoder_layer, config.num_hidden_layers)
self.pooler = PPMiniLMPooler(config)
[文档] def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
r"""
Args:
input_ids (Tensor):
If `input_ids` is a Tensor object, it is an indices of input
sequence tokens in the vocabulary. They are numerical
representations of tokens that build the input sequence. It's
data type should be `int64` and has a shape of [batch_size, sequence_length].
token_type_ids (Tensor, string, optional):
If `token_type_ids` is a Tensor object:
Segment token indices to indicate different portions of the inputs.
Selected in the range ``[0, type_vocab_size - 1]``.
If `type_vocab_size` is 2, which means the inputs have two portions.
Indices can either be 0 or 1:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
Its data type should be `int64` and it has a shape of [batch_size, sequence_length].
Defaults to `None`, which means we don't add segment embeddings.
position_ids (Tensor, optional):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
max_position_embeddings - 1]``.
Shape as `[batch_size, num_tokens]` and dtype as int64. Defaults to `None`.
attention_mask (Tensor, optional):
Mask used in multi-head attention to avoid performing attention on to some unwanted positions,
usually the paddings or the subsequent positions.
Its data type can be int, float and bool.
When the data type is bool, the `masked` tokens have `False` values and the others have `True` values.
When the data type is int, the `masked` tokens have `0` values and the others have `1` values.
When the data type is float, the `masked` tokens have `-INF` values and the others have `0` values.
It is a tensor with shape broadcasted to `[batch_size, num_attention_heads, sequence_length, sequence_length]`.
For example, its shape can be [batch_size, sequence_length], [batch_size, sequence_length, sequence_length],
[batch_size, num_attention_heads, sequence_length, sequence_length].
We use whole-word-mask in PPMiniLM, so the whole word will have the same value. For example, "使用" as a word,
"使" and "用" will have the same value.
Defaults to `None`, which means nothing needed to be prevented attention to.
Returns:
tuple: Returns tuple (``sequence_output``, ``pooled_output``).
With the fields:
- `sequence_output` (Tensor):
Sequence of hidden-states at the last layer of the model.
It's data type should be float32 and its shape is [batch_size, sequence_length, hidden_size].
- `pooled_output` (Tensor):
The output of first token (`[CLS]`) in sequence.
We "pool" the model by simply taking the hidden state corresponding to the first token.
Its data type should be float32 and its shape is [batch_size, hidden_size].
Example:
.. code-block::
import paddle
from paddlenlp.transformers import PPMiniLMModel, PPMiniLMTokenizer
tokenizer = PPMiniLMTokenizer.from_pretrained('ppminilm-6l-768h')
model = PPMiniLMModel.from_pretrained('ppminilm-6l-768h')
inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!")
inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()}
sequence_output, pooled_output = model(**inputs)
"""
if attention_mask is None:
attention_mask = paddle.unsqueeze(
(input_ids == self.pad_token_id).astype(self.pooler.dense.weight.dtype) * -1e4, axis=[1, 2]
)
else:
if attention_mask.ndim == 2:
# attention_mask [batch_size, sequence_length] -> [batch_size, 1, 1, sequence_length]
attention_mask = attention_mask.unsqueeze(axis=[1, 2]).astype(paddle.get_default_dtype())
attention_mask = (1.0 - attention_mask) * -1e4
embedding_output = self.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids
)
encoder_outputs = self.encoder(embedding_output, attention_mask)
sequence_output = encoder_outputs
pooled_output = self.pooler(sequence_output)
return sequence_output, pooled_output
[文档]class PPMiniLMForSequenceClassification(PPMiniLMPretrainedModel):
r"""
PPMiniLM Model with a linear layer on top of the output layer,
designed for sequence classification/regression tasks like GLUE tasks.
Args:
ppminilm (PPMiniLMModel):
An instance of `paddlenlp.transformers.PPMiniLMModel`.
num_classes (int, optional):
The number of classes. Default to `2`.
dropout (float, optional):
The dropout probability for output of PPMiniLM.
If None, use the same value as `hidden_dropout_prob`
of `paddlenlp.transformers.PPMiniLMModel` instance. Defaults to `None`.
"""
def __init__(self, config: PPMiniLMConfig):
super(PPMiniLMForSequenceClassification, self).__init__(config)
self.ppminilm = PPMiniLMModel(config)
self.num_labels = config.num_labels
self.dropout = nn.Dropout(
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
[文档] def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
r"""
Args:
input_ids (Tensor):
See :class:`PPMiniLMModel`.
token_type_ids (Tensor, optional):
See :class:`PPMiniLMModel`.
position_ids (Tensor, optional):
See :class:`PPMiniLMModel`.
attention_mask (Tensor, optional):
See :class:`MiniLMModel`.
Returns:
Tensor: Returns tensor `logits`, a tensor of the input text classification logits.
Shape as `[batch_size, num_classes]` and dtype as float32.
Example:
.. code-block::
import paddle
from paddlenlp.transformers import PPMiniLMForSequenceClassification, PPMiniLMTokenizer
tokenizer = PPMiniLMTokenizer.from_pretrained('ppminilm-6l-768h')
model = PPMiniLMForSequenceClassification.from_pretrained('ppminilm-6l-768h0')
inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!")
inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()}
logits = model(**inputs)
"""
_, pooled_output = self.ppminilm(
input_ids, token_type_ids=token_type_ids, position_ids=position_ids, attention_mask=attention_mask
)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
return logits
[文档]class PPMiniLMForQuestionAnswering(PPMiniLMPretrainedModel):
"""
PPMiniLM Model with a linear layer on top of the hidden-states
output to compute `span_start_logits` and `span_end_logits`,
designed for question-answering tasks like SQuAD.
Args:
ppminilm (`PPMiniLMModel`):
An instance of `PPMiniLMModel`.
"""
def __init__(self, config: PPMiniLMConfig):
super(PPMiniLMForQuestionAnswering, self).__init__(config)
self.ppminilm = PPMiniLMModel(config)
self.dropout = nn.Dropout(
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.classifier = nn.Linear(config.hidden_size, 2)
[文档] def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
r"""
Args:
input_ids (Tensor):
See :class:`PPMiniLMModel`.
token_type_ids (Tensor, optional):
See :class:`PPMiniLMModel`.
position_ids (Tensor, optional):
See :class:`PPMiniLMModel`.
attention_mask (Tensor, optional):
See :class:`PPMiniLMModel`.
Returns:
tuple: Returns tuple (`start_logits`, `end_logits`).
With the fields:
- `start_logits` (Tensor):
A tensor of the input token classification logits, indicates the start position of the labelled span.
Its data type should be float32 and its shape is [batch_size, sequence_length].
- `end_logits` (Tensor):
A tensor of the input token classification logits, indicates the end position of the labelled span.
Its data type should be float32 and its shape is [batch_size, sequence_length].
Example:
.. code-block::
import paddle
from paddlenlp.transformers import PPMiniLMForQuestionAnswering, PPMiniLMTokenizer
tokenizer = PPMiniLMTokenizer.from_pretrained('ppminilm-6l-768h')
model = PPMiniLMForQuestionAnswering.from_pretrained('ppminilm-6l-768h')
inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!")
inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()}
logits = model(**inputs)
"""
sequence_output, _ = self.ppminilm(
input_ids, token_type_ids=token_type_ids, position_ids=position_ids, attention_mask=attention_mask
)
logits = self.classifier(sequence_output)
logits = paddle.transpose(logits, perm=[2, 0, 1])
start_logits, end_logits = paddle.unstack(x=logits, axis=0)
return start_logits, end_logits