modeling¶
-
class
BertModel
(config: paddlenlp.transformers.bert.configuration.BertConfig)[源代码]¶ 基类:
paddlenlp.transformers.bert.modeling.BertPretrainedModel
The bare BERT Model transformer outputting raw hidden-states.
This model inherits from
PretrainedModel
. Refer to the superclass documentation for the generic methods.This model is also a Paddle paddle.nn.Layer subclass. Use it as a regular Paddle Layer and refer to the Paddle documentation for all matter related to general usage and behavior.
- 参数
config (
BertConfig
) -- An instance of BertConfig used to construct BertModel.
-
set_input_embeddings
(value)[源代码]¶ set new input embedding for model
- 参数
value (Embedding) -- the new embedding of model
- 引发
NotImplementedError -- Model has not implement
set_input_embeddings
method
-
forward
(input_ids: paddle.Tensor, token_type_ids: Optional[paddle.Tensor] = None, position_ids: Optional[paddle.Tensor] = None, attention_mask: Optional[paddle.Tensor] = None, past_key_values: Optional[Tuple[Tuple[paddle.Tensor]]] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None)[源代码]¶ The BertModel forward method, overrides the
__call__()
special method.- 参数
input_ids (Tensor) -- Indices of input sequence tokens in the vocabulary. They are numerical representations of tokens that build the input sequence. Its data type should be
int64
and it has a shape of [batch_size, sequence_length].token_type_ids (Tensor, optional) --
Segment token indices to indicate different portions of the inputs. Selected in the range
[0, type_vocab_size - 1]
. Iftype_vocab_size
is 2, which means the inputs have two portions. Indices can either be 0 or 1:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
Its data type should be
int64
and it has a shape of [batch_size, sequence_length]. Defaults toNone
, which means we don't add segment embeddings.position_ids (Tensor, optional) -- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, max_position_embeddings - 1]
. Shape as(batch_size, num_tokens)
and dtype as int64. Defaults toNone
.attention_mask (Tensor, optional) -- Mask used in multi-head attention to avoid performing attention on to some unwanted positions, usually the paddings or the subsequent positions. Its data type can be int, float and bool. When the data type is bool, the
masked
tokens haveFalse
values and the others haveTrue
values. When the data type is int, themasked
tokens have0
values and the others have1
values. When the data type is float, themasked
tokens have-INF
values and the others have0
values. It is a tensor with shape broadcasted to[batch_size, num_attention_heads, sequence_length, sequence_length]
. Defaults toNone
, which means nothing needed to be prevented attention to.past_key_values (tuple(tuple(Tensor)), optional) -- The length of tuple equals to the number of layers, and each inner tuple haves 4 tensors of shape
(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) which contains precomputed key and value hidden states of the attention blocks. Ifpast_key_values
are used, the user can optionally input only the lastinput_ids
(those that don't have their past key value states given to this model) of shape(batch_size, 1)
instead of allinput_ids
of shape(batch_size, sequence_length)
.use_cache (
bool
, optional) -- If set toTrue
,past_key_values
key value states are returned. Defaults toNone
.output_hidden_states (bool, optional) -- Whether to return the hidden states of all layers. Defaults to
None
.output_attentions (bool, optional) -- Whether to return the attentions tensors of all attention layers. Defaults to
None
.return_dict (bool, optional) -- Whether to return a
ModelOutput
object. IfFalse
, the output will be a tuple of tensors. Defaults toNone
.
- 返回
An instance of
BaseModelOutputWithPoolingAndCrossAttentions
ifreturn_dict=True
. Otherwise it returns a tuple of tensors corresponding to ordered and not None (depending on the input arguments) fields ofBaseModelOutputWithPoolingAndCrossAttentions
.
示例
import paddle from paddlenlp.transformers import BertModel, BertTokenizer tokenizer = BertTokenizer.from_pretrained('bert-wwm-chinese') model = BertModel.from_pretrained('bert-wwm-chinese') inputs = tokenizer("欢迎使用百度飞桨!") inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} output = model(**inputs)
-
class
BertPretrainedModel
(*args, **kwargs)[源代码]¶ 基类:
paddlenlp.transformers.model_utils.PretrainedModel
An abstract class for pretrained BERT models. It provides BERT related
model_config_file
,resource_files_names
,pretrained_resource_files_map
,pretrained_init_configuration
,base_model_prefix
for downloading and loading pretrained models. SeePretrainedModel
for more details.-
config_class
¶ alias of
paddlenlp.transformers.bert.configuration.BertConfig
-
base_model_class
¶
-
-
class
BertForPretraining
(config: paddlenlp.transformers.bert.configuration.BertConfig)[源代码]¶ 基类:
paddlenlp.transformers.bert.modeling.BertPretrainedModel
Bert Model with pretraining tasks on top.
- 参数
config (
BertConfig
) -- An instance of BertConfig used to construct BertForPretraining.
-
forward
(input_ids: paddle.Tensor, token_type_ids: Optional[paddle.Tensor] = None, position_ids: Optional[paddle.Tensor] = None, attention_mask: Optional[paddle.Tensor] = None, masked_positions: Optional[paddle.Tensor] = None, labels: Optional[paddle.Tensor] = None, next_sentence_label: Optional[paddle.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None)[源代码]¶ - 参数
input_ids (Tensor) -- See
BertModel
.token_type_ids (Tensor, optional) -- See
BertModel
.position_ids (Tensor, optional) -- See
BertModel
.attention_mask (Tensor, optional) -- See
BertModel
.masked_positions (Tensor, optional) -- See
BertPretrainingHeads
.labels (Tensor of shape
(batch_size, sequence_length)
, optional) -- Labels for computing the masked language modeling loss. Indices should be in[-100, 0, ..., vocab_size]
(seeinput_ids
docstring) Tokens with indices set to-100
are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., vocab_size]
.next_sentence_label (Tensor of shape
(batch_size,)
, optional) --Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see
input_ids
docstring) Indices should be in[0, 1]
:0 indicates sequence B is a continuation of sequence A,
1 indicates sequence B is a random sequence.
output_hidden_states (bool, optional) -- Whether to return the hidden states of all layers. Defaults to
None
.output_attentions (bool, optional) -- Whether to return the attentions tensors of all attention layers. Defaults to
None
.return_dict (bool, optional) -- Whether to return a
BertForPreTrainingOutput
object. IfFalse
, the output will be a tuple of tensors. Defaults toNone
.
- 返回
An instance of
BertForPreTrainingOutput
ifreturn_dict=True
. Otherwise it returns a tuple of tensors corresponding to ordered and not None (depending on the input arguments) fields ofBertForPreTrainingOutput
.
-
class
BertPretrainingCriterion
(vocab_size)[源代码]¶ 基类:
paddle.fluid.dygraph.layers.Layer
- 参数
vocab_size (int) -- Vocabulary size of
inputs_ids
inBertModel
. Defines the number of different tokens that can be represented by theinputs_ids
passed when callingBertModel
.
-
forward
(prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels, masked_lm_scale)[源代码]¶ - 参数
prediction_scores (Tensor) -- The scores of masked token prediction. Its data type should be float32. If
masked_positions
is None, its shape is [batch_size, sequence_length, vocab_size]. Otherwise, its shape is [batch_size, mask_token_num, vocab_size]seq_relationship_score (Tensor) -- The scores of next sentence prediction. Its data type should be float32 and its shape is [batch_size, 2]
masked_lm_labels (Tensor) -- The labels of the masked language modeling, its dimensionality is equal to
prediction_scores
. Its data type should be int64. Ifmasked_positions
is None, its shape is [batch_size, sequence_length, 1]. Otherwise, its shape is [batch_size, mask_token_num, 1]next_sentence_labels (Tensor) -- The labels of the next sentence prediction task, the dimensionality of
next_sentence_labels
is equal toseq_relation_labels
. Its data type should be int64 and its shape is [batch_size, 1]masked_lm_scale (Tensor or int) -- The scale of masked tokens. Used for the normalization of masked language modeling loss. If it is a
Tensor
, its data type should be int64 and its shape is equal toprediction_scores
.
- 返回
The pretraining loss, equals to the sum of
masked_lm_loss
plus the mean ofnext_sentence_loss
. Its data type should be float32 and its shape is [1].- 返回类型
Tensor
-
class
BertPretrainingHeads
(config: paddlenlp.transformers.bert.configuration.BertConfig, embedding_weights=None)[源代码]¶ 基类:
paddle.fluid.dygraph.layers.Layer
Perform language modeling task and next sentence classification task.
- 参数
config (
BertConfig
) -- An instance of BertConfig used to construct BertForPretraining.embedding_weights (Tensor, optional) -- Decoding weights used to map hidden_states to logits of the masked token prediction. Its data type should be float32 and its shape is [vocab_size, hidden_size]. Defaults to
None
, which means use the same weights of the embedding layer.
-
forward
(sequence_output, pooled_output, masked_positions=None)[源代码]¶ - 参数
sequence_output (Tensor) -- Sequence of hidden-states at the last layer of the model. It's data type should be float32 and its shape is [batch_size, sequence_length, hidden_size].
pooled_output (Tensor) -- The output of first token (
[CLS]
) in sequence. We "pool" the model by simply taking the hidden state corresponding to the first token. Its data type should be float32 and its shape is [batch_size, hidden_size].masked_positions (Tensor, optional) -- A tensor indicates positions to be masked in the position embedding. Its data type should be int64 and its shape is [batch_size, mask_token_num].
mask_token_num
is the number of masked tokens. It should be no bigger thansequence_length
. Defaults toNone
, which means we output hidden-states of all tokens in masked token prediction.
- 返回
Returns tuple (
prediction_scores
,seq_relationship_score
).With the fields:
prediction_scores
(Tensor):The scores of masked token prediction. Its data type should be float32. If
masked_positions
is None, its shape is [batch_size, sequence_length, vocab_size]. Otherwise, its shape is [batch_size, mask_token_num, vocab_size].
seq_relationship_score
(Tensor):The scores of next sentence prediction. Its data type should be float32 and its shape is [batch_size, 2].
- 返回类型
tuple
-
class
BertForSequenceClassification
(config: paddlenlp.transformers.bert.configuration.BertConfig)[源代码]¶ 基类:
paddlenlp.transformers.bert.modeling.BertPretrainedModel
Bert Model with a linear layer on top of the output layer, designed for sequence classification/regression tasks like GLUE tasks.
- 参数
config (
BertConfig
) -- An instance of BertConfig used to construct BertForSequenceClassification.
-
forward
(input_ids: paddle.Tensor, token_type_ids: Optional[paddle.Tensor] = None, position_ids: Optional[paddle.Tensor] = None, attention_mask: Optional[paddle.Tensor] = None, labels: Optional[paddle.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None)[源代码]¶ The BertForSequenceClassification forward method, overrides the __call__() special method.
- 参数
input_ids (Tensor) -- See
BertModel
.token_type_ids (Tensor, optional) -- See
BertModel
.position_ids (Tensor, optional) -- See
BertModel
.attention_mask (Tensor, optional) -- See
BertModel
.labels (Tensor of shape
(batch_size,)
, optional) -- Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., num_labels - 1]
. Ifnum_labels == 1
a regression loss is computed (Mean-Square loss), Ifnum_labels > 1
a classification loss is computed (Cross-Entropy).output_hidden_states (bool, optional) -- Whether to return the hidden states of all layers. Defaults to
None
.output_attentions (bool, optional) -- Whether to return the attentions tensors of all attention layers. Defaults to
None
.return_dict (bool, optional) -- Whether to return a
SequenceClassifierOutput
object. IfFalse
, the output will be a tuple of tensors. Defaults toNone
.
- 返回
An instance of
SequenceClassifierOutput
ifreturn_dict=True
. Otherwise it returns a tuple of tensors corresponding to ordered and not None (depending on the input arguments) fields ofSequenceClassifierOutput
.
示例
import paddle from paddlenlp.transformers.bert.modeling import BertForSequenceClassification from paddlenlp.transformers.bert.tokenizer import BertTokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-cased') model = BertForSequenceClassification.from_pretrained('bert-base-cased', num_labels=2) inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!") inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} logits = model(**inputs) print(logits.shape) # [1, 2]
-
class
BertForTokenClassification
(config: paddlenlp.transformers.bert.configuration.BertConfig)[源代码]¶ 基类:
paddlenlp.transformers.bert.modeling.BertPretrainedModel
Bert Model with a linear layer on top of the hidden-states output layer, designed for token classification tasks like NER tasks.
- 参数
config (
BertConfig
) -- An instance of BertConfig used to construct BertForTokenClassification.
-
forward
(input_ids: paddle.Tensor, token_type_ids: Optional[paddle.Tensor] = None, position_ids: Optional[paddle.Tensor] = None, attention_mask: Optional[paddle.Tensor] = None, labels: Optional[paddle.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None)[源代码]¶ The BertForTokenClassification forward method, overrides the __call__() special method.
- 参数
input_ids (Tensor) -- See
BertModel
.token_type_ids (Tensor, optional) -- See
BertModel
.position_ids (Tensor, optional) -- See
BertModel
.attention_mask (list, optional) -- See
BertModel
.labels (Tensor of shape
(batch_size, sequence_length)
, optional) -- Labels for computing the token classification loss. Indices should be in[0, ..., num_labels - 1]
.output_hidden_states (bool, optional) -- Whether to return the hidden states of all layers. Defaults to
None
.output_attentions (bool, optional) -- Whether to return the attentions tensors of all attention layers. Defaults to
None
.return_dict (bool, optional) -- Whether to return a
TokenClassifierOutput
object. IfFalse
, the output will be a tuple of tensors. Defaults toNone
.
- 返回
An instance of
TokenClassifierOutput
ifreturn_dict=True
. Otherwise it returns a tuple of tensors corresponding to ordered and not None (depending on the input arguments) fields ofTokenClassifierOutput
.
示例
import paddle from paddlenlp.transformers.bert.modeling import BertForTokenClassification from paddlenlp.transformers.bert.tokenizer import BertTokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-cased') model = BertForTokenClassification.from_pretrained('bert-base-cased', num_labels=2) inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!") inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} logits = model(**inputs) print(logits.shape) # [1, 13, 2]
-
class
BertForQuestionAnswering
(config: paddlenlp.transformers.bert.configuration.BertConfig)[源代码]¶ 基类:
paddlenlp.transformers.bert.modeling.BertPretrainedModel
Bert Model with a linear layer on top of the hidden-states output to compute
span_start_logits
andspan_end_logits
, designed for question-answering tasks like SQuAD.- 参数
config (
BertConfig
) -- An instance of BertConfig used to construct BertForQuestionAnswering.
-
forward
(input_ids: paddle.Tensor, token_type_ids: Optional[paddle.Tensor] = None, position_ids: Optional[paddle.Tensor] = None, attention_mask: Optional[paddle.Tensor] = None, start_positions: Optional[paddle.Tensor] = None, end_positions: Optional[paddle.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None)[源代码]¶ The BertForQuestionAnswering forward method, overrides the __call__() special method.
- 参数
input_ids (Tensor) -- See
BertModel
.token_type_ids (Tensor, optional) -- See
BertModel
.position_ids (Tensor, optional) -- See
BertModel
.attention_mask (Tensor, optional) -- See
BertModel
.start_positions (Tensor of shape
(batch_size,)
, optional) -- Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss.end_positions (Tensor of shape
(batch_size,)
, optional) -- Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss.output_hidden_states (bool, optional) -- Whether to return the hidden states of all layers. Defaults to
None
.output_attentions (bool, optional) -- Whether to return the attentions tensors of all attention layers. Defaults to
None
.return_dict (bool, optional) -- Whether to return a
QuestionAnsweringModelOutput
object. IfFalse
, the output will be a tuple of tensors. Defaults toNone
.
- 返回
An instance of
QuestionAnsweringModelOutput
ifreturn_dict=True
. Otherwise it returns a tuple of tensors corresponding to ordered and not None (depending on the input arguments) fields ofQuestionAnsweringModelOutput
.
示例
import paddle from paddlenlp.transformers.bert.modeling import BertForQuestionAnswering from paddlenlp.transformers.bert.tokenizer import BertTokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-cased') model = BertForQuestionAnswering.from_pretrained('bert-base-cased') inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!") inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} outputs = model(**inputs) start_logits = outputs[0] end_logits = outputs[1]
-
class
BertForMultipleChoice
(config: paddlenlp.transformers.bert.configuration.BertConfig)[源代码]¶ 基类:
paddlenlp.transformers.bert.modeling.BertPretrainedModel
Bert Model with a linear layer on top of the hidden-states output layer, designed for multiple choice tasks like RocStories/SWAG tasks.
- 参数
config (
BertConfig
) -- An instance of BertConfig used to construct BertForMultipleChoice.
实际案例
>>> model = BertForMultipleChoice(config, dropout=0.1) >>> # or >>> config.hidden_dropout_prob = 0.1 >>> model = BertForMultipleChoice(config)
-
forward
(input_ids: paddle.Tensor, token_type_ids: Optional[paddle.Tensor] = None, position_ids: Optional[paddle.Tensor] = None, attention_mask: Optional[paddle.Tensor] = None, labels: Optional[paddle.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None)[源代码]¶ The BertForMultipleChoice forward method, overrides the __call__() special method.
- 参数
input_ids (Tensor) -- See
BertModel
and shape as [batch_size, num_choice, sequence_length].token_type_ids (Tensor, optional) -- See
BertModel
and shape as [batch_size, num_choice, sequence_length].position_ids (Tensor, optional) -- See
BertModel
and shape as [batch_size, num_choice, sequence_length].attention_mask (list, optional) -- See
BertModel
and shape as [batch_size, num_choice, sequence_length].labels (Tensor of shape
(batch_size, )
, optional) -- Labels for computing the multiple choice classification loss. Indices should be in[0, ..., num_choices-1]
wherenum_choices
is the size of the second dimension of the input tensors. (Seeinput_ids
above)output_hidden_states (bool, optional) -- Whether to return the hidden states of all layers. Defaults to
None
.output_attentions (bool, optional) -- Whether to return the attentions tensors of all attention layers. Defaults to
None
.return_dict (bool, optional) -- Whether to return a
MultipleChoiceModelOutput
object. IfFalse
, the output will be a tuple of tensors. Defaults toNone
.
- 返回
An instance of
MultipleChoiceModelOutput
ifreturn_dict=True
. Otherwise it returns a tuple of tensors corresponding to ordered and not None (depending on the input arguments) fields ofMultipleChoiceModelOutput
.
示例
import paddle from paddlenlp.transformers import BertForMultipleChoice, BertTokenizer from paddlenlp.data import Pad, Dict tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForMultipleChoice.from_pretrained('bert-base-uncased', num_choices=2) data = [ { "question": "how do you turn on an ipad screen?", "answer1": "press the volume button.", "answer2": "press the lock button.", "label": 1, }, { "question": "how do you indent something?", "answer1": "leave a space before starting the writing", "answer2": "press the spacebar", "label": 0, }, ] text = [] text_pair = [] for d in data: text.append(d["question"]) text_pair.append(d["answer1"]) text.append(d["question"]) text_pair.append(d["answer2"]) inputs = tokenizer(text, text_pair) batchify_fn = lambda samples, fn=Dict( { "input_ids": Pad(axis=0, pad_val=tokenizer.pad_token_id), # input_ids "token_type_ids": Pad( axis=0, pad_val=tokenizer.pad_token_type_id ), # token_type_ids } ): fn(samples) inputs = batchify_fn(inputs) reshaped_logits = model( input_ids=paddle.to_tensor(inputs[0], dtype="int64"), token_type_ids=paddle.to_tensor(inputs[1], dtype="int64"), ) print(reshaped_logits.shape) # [2, 2]
-
class
BertForMaskedLM
(config: paddlenlp.transformers.bert.configuration.BertConfig)[源代码]¶ 基类:
paddlenlp.transformers.bert.modeling.BertPretrainedModel
Bert Model with a
masked language modeling
head on top.- 参数
config (
BertConfig
) -- An instance of BertConfig used to construct BertForMaskedLM.
-
forward
(input_ids: paddle.Tensor, token_type_ids: Optional[paddle.Tensor] = None, position_ids: Optional[paddle.Tensor] = None, attention_mask: Optional[paddle.Tensor] = None, masked_positions: Optional[paddle.Tensor] = None, labels: Optional[paddle.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None)[源代码]¶ - 参数
input_ids (Tensor) -- See
BertModel
.token_type_ids (Tensor, optional) -- See
BertModel
.position_ids (Tensor, optional) -- See
BertModel
.attention_mask (Tensor, optional) -- See
BertModel
.labels (Tensor of shape
(batch_size, sequence_length)
, optional) -- Labels for computing the masked language modeling loss. Indices should be in[-100, 0, ..., vocab_size]
(seeinput_ids
docstring) Tokens with indices set to-100
are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., vocab_size]
output_hidden_states (bool, optional) -- Whether to return the hidden states of all layers. Defaults to
None
.output_attentions (bool, optional) -- Whether to return the attentions tensors of all attention layers. Defaults to
None
.return_dict (bool, optional) -- Whether to return a
MaskedLMOutput
object. IfFalse
, the output will be a tuple of tensors. Defaults toNone
.
- 返回
An instance of
MaskedLMOutput
ifreturn_dict=True
. Otherwise it returns a tuple of tensors corresponding to ordered and not None (depending on the input arguments) fields ofMaskedLMOutput
.
示例
import paddle from paddlenlp.transformers import BertForMaskedLM, BertTokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForMaskedLM.from_pretrained('bert-base-uncased') inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!") inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} logits = model(**inputs) print(logits.shape) # [1, 13, 30522]