tokenizer

class BasicTokenizer(do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None)[源代码]

基类:object

Runs basic tokenization (punctuation splitting, lower casing, etc.).

参数
  • do_lower_case (bool) -- Whether to lowercase the input when tokenizing. Defaults to True.

  • never_split (Iterable) -- Collection of tokens which will never be split during tokenization. Only has an effect when do_basic_tokenize=True

  • tokenize_chinese_chars (bool) -- Whether to tokenize Chinese characters.

  • strip_accents -- (bool): Whether to strip all accents. If this option is not specified, then it will be determined by the value for lowercase (as in the original BERT).

tokenize(text, never_split=None)[源代码]

Tokenizes a piece of text using basic tokenizer.

参数
  • text (str) -- A piece of text.

  • never_split (List[str]) -- List of token not to split.

返回

A list of tokens.

返回类型

list(str)

实际案例

from paddlenlp.transformers import BasicTokenizer
basictokenizer = BasicTokenizer()
tokens = basictokenizer.tokenize('He was a puppeteer')
'''
['he', 'was', 'a', 'puppeteer']
'''
class BertTokenizer(vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token='[UNK]', sep_token='[SEP]', pad_token='[PAD]', cls_token='[CLS]', mask_token='[MASK]', tokenize_chinese_chars=True, strip_accents=None, **kwargs)[源代码]

基类:paddlenlp.transformers.tokenizer_utils.PretrainedTokenizer

Constructs a BERT tokenizer. It uses a basic tokenizer to do punctuation splitting, lower casing and so on, and follows a WordPiece tokenizer to tokenize as subwords.

参数
  • vocab_file (str) -- The vocabulary file path (ends with '.txt') required to instantiate a WordpieceTokenizer.

  • do_lower_case (bool, optional) -- Whether to lowercase the input when tokenizing. Defaults to True.

  • do_basic_tokenize (bool, optional) -- Whether to use a basic tokenizer before a WordPiece tokenizer. Defaults to True.

  • never_split (Iterable, optional) -- Collection of tokens which will never be split during tokenization. Only has an effect when do_basic_tokenize=True. Defaults to None.

  • unk_token (str, optional) -- A special token representing the unknown (out-of-vocabulary) token. An unknown token is set to be unk_token inorder to be converted to an ID. Defaults to "[UNK]".

  • sep_token (str, optional) -- A special token separating two different sentences in the same input. Defaults to "[SEP]".

  • pad_token (str, optional) -- A special token used to make arrays of tokens the same size for batching purposes. Defaults to "[PAD]".

  • cls_token (str, optional) -- A special token used for sequence classification. It is the last token of the sequence when built with special tokens. Defaults to "[CLS]".

  • mask_token (str, optional) -- A special token representing a masked token. This is the token used in the masked language modeling task which the model tries to predict the original unmasked ones. Defaults to "[MASK]".

  • tokenize_chinese_chars (bool, optional) -- Whether to tokenize Chinese characters. Defaults to True.

  • strip_accents -- (bool, optional): Whether to strip all accents. If this option is not specified, then it will be determined by the value for lowercase (as in the original BERT). Defaults to None.

实际案例

from paddlenlp.transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

inputs = tokenizer('He was a puppeteer')
print(inputs)

'''
{'input_ids': [101, 2002, 2001, 1037, 13997, 11510, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0]}
'''
property vocab_size

Return the size of vocabulary.

返回

The size of vocabulary.

返回类型

int

get_vocab()[源代码]

Returns the vocabulary as a dictionary of token to index.

tokenizer.get_vocab()[token] is equivalent to tokenizer.convert_tokens_to_ids(token) when token is in the vocab.

返回

The vocabulary.

返回类型

Dict[str, int]

convert_tokens_to_string(tokens)[源代码]

Converts a sequence of tokens (list of string) to a single string. Since the usage of WordPiece introducing ## to concat subwords, also removes ## when converting.

参数

tokens (list) -- A list of string representing tokens to be converted.

返回

Converted string from tokens.

返回类型

str

实际案例

from paddlenlp.transformers import BertTokenizer

berttokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokens = berttokenizer.tokenize('He was a puppeteer')
'''
['he', 'was', 'a', 'puppet', '##eer']
'''
strings = tokenizer.convert_tokens_to_string(tokens)
'''
he was a puppeteer
'''
num_special_tokens_to_add(pair=False)[源代码]

Returns the number of added tokens when encoding a sequence with special tokens.

参数

pair (bool) -- Whether the input is a sequence pair or a single sequence. Defaults to False and the input is a single sequence.

返回

Number of tokens added to sequences.

返回类型

int

build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)[源代码]

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens.

A BERT sequence has the following format:

  • single sequence: [CLS] X [SEP]

  • pair of sequences: [CLS] A [SEP] B [SEP]

参数
  • token_ids_0 (List[int]) -- List of IDs to which the special tokens will be added.

  • token_ids_1 (List[int], optional) -- Optional second list of IDs for sequence pairs. Defaults to None.

返回

List of input_id with the appropriate special tokens.

返回类型

List[int]

build_offset_mapping_with_special_tokens(offset_mapping_0, offset_mapping_1=None)[源代码]

Build offset map from a pair of offset map by concatenating and adding offsets of special tokens.

A BERT offset_mapping has the following format:

  • single sequence: (0,0) X (0,0)

  • pair of sequences: (0,0) A (0,0) B (0,0)

参数
  • offset_mapping_ids_0 (List[tuple]) -- List of wordpiece offsets to which the special tokens will be added.

  • offset_mapping_ids_1 (List[tuple], optional) -- Optional second list of wordpiece offsets for offset mapping pairs. Defaults to None.

返回

A list of wordpiece offsets with the appropriate offsets of special tokens.

返回类型

List[tuple]

create_token_type_ids_from_sequences(token_ids_0, token_ids_1=None)[源代码]

Create a mask from the two sequences passed to be used in a sequence-pair classification task.

A BERT sequence pair mask has the following format:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

If token_ids_1 is None, this method only returns the first portion of the mask (0s).

参数
  • token_ids_0 (List[int]) -- A list of inputs_ids for the first sequence.

  • token_ids_1 (List[int], optional) -- Optional second list of IDs for sequence pairs. Defaults to None.

返回

List of token_type_id according to the given sequence(s).

返回类型

List[int]

get_special_tokens_mask(token_ids_0, token_ids_1=None, already_has_special_tokens=False)[源代码]

Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer encode methods.

参数
  • token_ids_0 (List[int]) -- A list of inputs_ids for the first sequence.

  • token_ids_1 (List[int], optinal) -- Optional second list of IDs for sequence pairs. Defaults to None.

  • already_has_special_tokens (bool, optional) -- Whether or not the token list is already formatted with special tokens for the model. Defaults to None.

返回

The list of integers either be 0 or 1: 1 for a special token, 0 for a sequence token.

返回类型

List[int]

class WordpieceTokenizer(vocab, unk_token, max_input_chars_per_word=100)[源代码]

基类:object

Runs WordPiece tokenization.

参数
  • vocab (Vocab|dict) -- Vocab of the word piece tokenizer.

  • unk_token (str) -- A specific token to replace all unknown tokens.

  • max_input_chars_per_word (int) -- If a word's length is more than max_input_chars_per_word, it will be dealt as unknown word. Defaults to 100.

tokenize(text)[源代码]

Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary.

参数

text -- A single token or whitespace separated tokens. This should have already been passed through BasicTokenizer.

返回

A list of wordpiece tokens.

返回类型

list (str)

实际案例

from paddlenlp.transformers import BertTokenizer, WordpieceTokenizer

berttokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
vocab  = berttokenizer.vocab
unk_token = berttokenizer.unk_token

wordpiecetokenizer = WordpieceTokenizer(vocab,unk_token)
inputs = wordpiecetokenizer.tokenize("unaffable")
print(inputs)
'''
["un", "##aff", "##able"]
'''