modeling

class TinyBertModel(vocab_size, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act='gelu', hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, initializer_range=0.02, pad_token_id=0, fit_size=768)[源代码]

基类:paddlenlp.transformers.tinybert.modeling.TinyBertPretrainedModel

The bare TinyBert Model transformer outputting raw hidden-states.

This model inherits from PretrainedModel. Refer to the superclass documentation for the generic methods.

This model is also a Paddle paddle.nn.Layer subclass. Use it as a regular Paddle Layer and refer to the Paddle documentation for all matter related to general usage and behavior.

参数
  • vocab_size (int) -- Vocabulary size of inputs_ids in TinyBertModel. Defines the number of different tokens that can be represented by the inputs_ids passed when calling TinyBertModel.

  • hidden_size (int, optional) -- Dimensionality of the embedding layer, encoder layers and pooler layer. Defaults to 768.

  • num_hidden_layers (int, optional) -- Number of hidden layers in the Transformer encoder. Defaults to 12.

  • num_attention_heads (int, optional) -- Number of attention heads for each attention layer in the Transformer encoder. Defaults to 12.

  • intermediate_size (int, optional) -- Dimensionality of the feed-forward (ff) layer in the encoder. Input tensors to ff layers are firstly projected from hidden_size to intermediate_size, and then projected back to hidden_size. Typically intermediate_size is larger than hidden_size. Defaults to 3072.

  • hidden_act (str, optional) -- The non-linear activation function in the feed-forward layer. "gelu", "relu" and any other paddle supported activation functions are supported. Defaults to "gelu".

  • hidden_dropout_prob (float, optional) -- The dropout probability for all fully connected layers in the embeddings and encoder. Defaults to 0.1.

  • attention_probs_dropout_prob (float, optional) -- The dropout probability used in MultiHeadAttention in all encoder layers to drop some attention target. Defaults to 0.1.

  • max_position_embeddings (int, optional) -- The maximum value of the dimensionality of position encoding. The dimensionality of position encoding is the dimensionality of the sequence in TinyBertModel. Defaults to 512.

  • type_vocab_size (int, optional) -- The vocabulary size of token_type_ids passed when calling TinyBertModel. Defaults to 16.

  • initializer_range (float, optional) --

    The standard deviation of the normal initializer. Defaults to 0.02.

    注解

    A normal_initializer initializes weight matrices as normal distributions. See TinyBertPretrainedModel.init_weights() for how weights are initialized in TinyBertModel.

  • pad_token_id (int, optional) -- The index of padding token in the token vocabulary. Defaults to 0.

  • fit_size (int, optional) -- Dimensionality of the output layer of fit_dense(s), which is the hidden size of the teacher model. fit_dense(s) means a hidden states' transformation from student to teacher. fit_dense(s) will be generated when bert model is distilled during the training, and will not be generated during the prediction process. fit_denses is used in v2 models and it has num_hidden_layers+1 layers. fit_dense is used in other pretraining models and it has one linear layer. Defaults to 768.

forward(input_ids, token_type_ids=None, attention_mask=None)[源代码]

The TinyBertModel forward method, overrides the __call__() special method.

参数
  • input_ids (Tensor) -- Indices of input sequence tokens in the vocabulary. They are numerical representations of tokens that build the input sequence. Its data type should be int64 and it has a shape of [batch_size, sequence_length].

  • token_type_ids (Tensor, optional) --

    Segment token indices to indicate different portions of the inputs. Selected in the range [0, type_vocab_size - 1]. If type_vocab_size is 2, which means the inputs have two portions. Indices can either be 0 or 1:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    Its data type should be int64 and it has a shape of [batch_size, sequence_length]. Defaults to None, which means we don't add segment embeddings.

  • attention_mask (Tensor, optional) -- Mask used in multi-head attention to avoid performing attention to some unwanted positions, usually the paddings or the subsequent positions. Its data type can be int, float and bool. When the data type is bool, the masked tokens have False values and the others have True values. When the data type is int, the masked tokens have 0 values and the others have 1 values. When the data type is float, the masked tokens have -INF values and the others have 0 values. It is a tensor with shape broadcasted to [batch_size, num_attention_heads, sequence_length, sequence_length]. For example, its shape can be [batch_size, sequence_length], [batch_size, sequence_length, sequence_length], [batch_size, num_attention_heads, sequence_length, sequence_length]. Defaults to None, which means nothing needed to be prevented attention to.

返回

Returns tuple (encoder_output, pooled_output).

With the fields:

  • encoder_output (Tensor):

    Sequence of hidden-states at the last layer of the model. It's data type should be float32 and its shape is [batch_size, sequence_length, hidden_size].

  • pooled_output (Tensor):

    The output of first token ([CLS]) in sequence. We "pool" the model by simply taking the hidden state corresponding to the first token. Its data type should be float32 and its shape is [batch_size, hidden_size].

返回类型

tuple

示例

import paddle
from paddlenlp.transformers import TinyBertModel, TinyBertTokenizer

tokenizer = TinyBertTokenizer.from_pretrained('tinybert-4l-312d')
model = TinyBertModel.from_pretrained('tinybert-4l-312d')

inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP! ")
inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()}
output = model(**inputs)
class TinyBertPretrainedModel(name_scope=None, dtype='float32')[源代码]

基类:paddlenlp.transformers.model_utils.PretrainedModel

An abstract class for pretrained TinyBERT models. It provides TinyBERT related model_config_file, resource_files_names, pretrained_resource_files_map, pretrained_init_configuration, base_model_prefix for downloading and loading pretrained models. See PretrainedModel for more details.

init_weights(layer)[源代码]

Initialization hook

base_model_class

alias of paddlenlp.transformers.tinybert.modeling.TinyBertModel

class TinyBertForPretraining(tinybert)[源代码]

基类:paddlenlp.transformers.tinybert.modeling.TinyBertPretrainedModel

TinyBert Model with pretraining tasks on top.

参数

tinybert (TinyBertModel) -- An instance of TinyBertModel.

forward(input_ids, token_type_ids=None, attention_mask=None)[源代码]

The TinyBertForPretraining forward method, overrides the __call__() special method.

参数
返回

Returns tensor sequence_output, sequence of hidden-states at the last layer of the model. It's data type should be float32 and its shape is [batch_size, sequence_length, hidden_size].

返回类型

Tensor

示例

import paddle
from paddlenlp.transformers.tinybert.modeling import TinyBertForPretraining
from paddlenlp.transformers.tinybert.tokenizer import TinyBertTokenizer

tokenizer = TinyBertTokenizer.from_pretrained('tinybert-4l-312d')
model = TinyBertForPretraining.from_pretrained('tinybert-4l-312d')

inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP! ")
inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()}
outputs = model(**inputs)

logits = outputs[0]
class TinyBertForSequenceClassification(tinybert, num_classes=2, dropout=None)[源代码]

基类:paddlenlp.transformers.tinybert.modeling.TinyBertPretrainedModel

TinyBert Model with a linear layer on top of the output layer, designed for sequence classification/regression tasks like GLUE tasks.

参数
  • tinybert (TinyBertModel) -- An instance of TinyBertModel.

  • num_classes (int, optional) -- The number of classes. Defaults to 2.

  • dropout (float, optional) -- The dropout probability for output of TinyBert. If None, use the same value as hidden_dropout_prob of TinyBertModel instance tinybert. Defaults to None.

forward(input_ids, token_type_ids=None, attention_mask=None)[源代码]

The TinyBertForSequenceClassification forward method, overrides the __call__() special method.

参数
返回

Returns tensor logits, a tensor of the input text classification logits. Shape as [batch_size, num_classes] and dtype as float32.

返回类型

Tensor

示例

import paddle
from paddlenlp.transformers.tinybert.modeling import TinyBertForSequenceClassification
from paddlenlp.transformers.tinybert.tokenizer import TinyBertTokenizer

tokenizer = TinyBertTokenizer.from_pretrained('tinybert-4l-312d')
model = TinyBertForSequenceClassification.from_pretrained('tinybert-4l-312d')

inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP! ")
inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()}
outputs = model(**inputs)

logits = outputs[0]