Tokenization classes for MegatronBert.

class MegatronBertTokenizer(vocab_file, do_lower_case=True, unk_token='[UNK]', sep_token='[SEP]', pad_token='[PAD]', cls_token='[CLS]', mask_token='[MASK]', **kwargs)[源代码]#


Constructs a MegatronBert tokenizer. It uses a basic tokenizer to do punctuation splitting, lower casing and so on, and follows a WordPiece tokenizer to tokenize as subwords.

  • vocab_file (str) -- The vocabulary file path (ends with '.txt') required to instantiate a WordpieceTokenizer.

  • do_lower_case (bool) -- Whether or not to lowercase the input when tokenizing. Defaults to`True`.

  • unk_token (str) -- A special token representing the unknown (out-of-vocabulary) token. An unknown token is set to be unk_token inorder to be converted to an ID. Defaults to "[UNK]".

  • sep_token (str) -- A special token separating two different sentences in the same input. Defaults to "[SEP]".

  • pad_token (str) -- A special token used to make arrays of tokens the same size for batching purposes. Defaults to "[PAD]".

  • cls_token (str) -- A special token used for sequence classification. It is the last token of the sequence when built with special tokens. Defaults to "[CLS]".

  • mask_token (str) -- A special token representing a masked token. This is the token used in the masked language modeling task which the model tries to predict the original unmasked ones. Defaults to "[MASK]".


from paddlenlp.transformers import MegatronBertTokenizer
tokenizer = MegatronBertTokenizer.from_pretrained('MegatronBert-uncased')
inputs = tokenizer('He was a puppeteer')

{'input_ids': [101, 2002, 2001, 1037, 13997, 11510, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0]}