modeling#
- class DebertaModel(config: DebertaConfig)[源代码]#
-
- set_input_embeddings(value)[源代码]#
set new input embedding for model
- 参数:
value (Embedding) -- the new embedding of model
- 抛出:
NotImplementedError -- Model has not implement
set_input_embeddings
method
- forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None)[源代码]#
Defines the computation performed at every call. Should be overridden by all subclasses.
- 参数:
*inputs (tuple) -- unpacked tuple arguments
**kwargs (dict) -- unpacked dict arguments
- class DebertaForSequenceClassification(config)[源代码]#
-
- set_input_embeddings(new_embeddings)[源代码]#
set new input embedding for model
- 参数:
value (Embedding) -- the new embedding of model
- 抛出:
NotImplementedError -- Model has not implement
set_input_embeddings
method
- forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[源代码]#
Defines the computation performed at every call. Should be overridden by all subclasses.
- 参数:
*inputs (tuple) -- unpacked tuple arguments
**kwargs (dict) -- unpacked dict arguments
- class DebertaForQuestionAnswering(config)[源代码]#
-
- forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)[源代码]#
Defines the computation performed at every call. Should be overridden by all subclasses.
- 参数:
*inputs (tuple) -- unpacked tuple arguments
**kwargs (dict) -- unpacked dict arguments
- class DebertaForTokenClassification(config)[源代码]#
-
- forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[源代码]#
Defines the computation performed at every call. Should be overridden by all subclasses.
- 参数:
*inputs (tuple) -- unpacked tuple arguments
**kwargs (dict) -- unpacked dict arguments
- class DebertaPreTrainedModel(*args, **kwargs)[源代码]#
-
An abstract class for pretrained BERT models. It provides BERT related
model_config_file
,resource_files_names
,pretrained_resource_files_map
,pretrained_init_configuration
,base_model_prefix
for downloading and loading pretrained models. SeePretrainedModel
for more details.- config_class#
DebertaConfig
的别名
- base_model_class#
DebertaModel
的别名
- class DebertaForMultipleChoice(config: DebertaConfig)[源代码]#
-
Deberta Model with a linear layer on top of the hidden-states output layer, designed for multiple choice tasks like RocStories/SWAG tasks.
- 参数:
bert (
DebertaModel
) -- An instance of DebertaModel.num_choices (int, optional) -- The number of choices. Defaults to
2
.dropout (float, optional) -- The dropout probability for output of Bert. If None, use the same value as
hidden_dropout_prob
ofDebertaModel
instancebert
. Defaults to None.
- forward(input_ids=None, token_type_ids=None, position_ids=None, attention_mask=None, inputs_embeds=None, labels=None, output_hidden_states=None, output_attentions=None, return_dict=None)[源代码]#
The DebertaForMultipleChoice forward method, overrides the __call__() special method.
- 参数:
input_ids (Tensor) -- See
DebertaModel
and shape as [batch_size, num_choice, sequence_length].token_type_ids (Tensor, optional) -- See
DebertaModel
and shape as [batch_size, num_choice, sequence_length].position_ids (Tensor, optional) -- See
DebertaModel
and shape as [batch_size, num_choice, sequence_length].attention_mask (list, optional) -- See
DebertaModel
and shape as [batch_size, num_choice, sequence_length].inputs_embeds (list, optional) -- See
DebertaModel
and shape as [batch_size, num_choice, sequence_length].labels (Tensor of shape
(batch_size, )
, optional) -- Labels for computing the multiple choice classification loss. Indices should be in[0, ..., num_choices-1]
wherenum_choices
is the size of the second dimension of the input tensors. (Seeinput_ids
above)output_hidden_states (bool, optional) -- Whether to return the hidden states of all layers. Defaults to
False
.output_attentions (bool, optional) -- Whether to return the attentions tensors of all attention layers. Defaults to
False
.return_dict (bool, optional) -- Whether to return a
MultipleChoiceModelOutput
object. IfFalse
, the output will be a tuple of tensors. Defaults toFalse
.
- 返回:
An instance of
MultipleChoiceModelOutput
ifreturn_dict=True
. Otherwise it returns a tuple of tensors corresponding to ordered and not None (depending on the input arguments) fields ofMultipleChoiceModelOutput
.
示例
import paddle from paddlenlp.transformers import BertForMultipleChoice, BertTokenizer from paddlenlp.data import Pad, Dict tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForMultipleChoice.from_pretrained('bert-base-uncased', num_choices=2) data = [ { "question": "how do you turn on an ipad screen?", "answer1": "press the volume button.", "answer2": "press the lock button.", "label": 1, }, { "question": "how do you indent something?", "answer1": "leave a space before starting the writing", "answer2": "press the spacebar", "label": 0, }, ] text = [] text_pair = [] for d in data: text.append(d["question"]) text_pair.append(d["answer1"]) text.append(d["question"]) text_pair.append(d["answer2"]) inputs = tokenizer(text, text_pair) batchify_fn = lambda samples, fn=Dict( { "input_ids": Pad(axis=0, pad_val=tokenizer.pad_token_id), # input_ids "token_type_ids": Pad( axis=0, pad_val=tokenizer.pad_token_type_id ), # token_type_ids } ): fn(samples) inputs = batchify_fn(inputs) reshaped_logits = model( input_ids=paddle.to_tensor(inputs[0], dtype="int64"), token_type_ids=paddle.to_tensor(inputs[1], dtype="int64"), ) print(reshaped_logits.shape) # [2, 2]