paddlenlp.transformers.gpt.modeling 源代码

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations

import collections

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import paddle.tensor as tensor
from paddle.fluid import layers
from paddle.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from paddle.nn.layer.transformer import _convert_param_attr_to_list

from ...utils.converter import StateDictNameMapping
from ...utils.log import logger
from .. import PretrainedModel, register_base_model
from ..model_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
    SequenceClassifierOutputWithPast,
    TokenClassifierOutput,
)
from .configuration import (
    GPT_PRETRAINED_INIT_CONFIGURATION,
    GPT_PRETRAINED_RESOURCE_FILES_MAP,
    GPTConfig,
)

__all__ = [
    "GPTModel",
    "GPTPretrainedModel",
    "GPTForPretraining",
    "GPTPretrainingCriterion",
    "GPTForGreedyGeneration",
    "GPTLMHeadModel",
    "GPTForTokenClassification",
    "GPTForSequenceClassification",
    "GPTForCausalLM",
]


class MultiHeadAttention(nn.Layer):
    """
    Attention mapps queries and a set of key-value pairs to outputs, and
    Multi-Head Attention performs multiple parallel attention to jointly attending
    to information from different representation subspaces.

    """

    Cache = collections.namedtuple("Cache", ["k", "v"])
    StaticCache = collections.namedtuple("StaticCache", ["k", "v"])

    def __init__(
        self,
        config,
        kdim=None,
        vdim=None,
        need_weights=False,
        weight_attr=None,
        bias_attr=None,
    ):
        super(MultiHeadAttention, self).__init__()

        embed_dim = config.hidden_size
        self.embed_dim = config.hidden_size
        self.kdim = kdim if kdim is not None else config.hidden_size
        self.vdim = vdim if vdim is not None else config.hidden_size
        self.num_heads = config.num_attention_heads
        self.dropout = config.attention_probs_dropout_prob
        self.need_weights = need_weights
        self.fuse_attention_qkv = config.fuse_attention_qkv

        self.head_dim = embed_dim // self.num_heads
        assert self.head_dim * self.num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"

        if self.fuse_attention_qkv:
            assert self.kdim == embed_dim
            assert self.vdim == embed_dim
            self.qkv_proj = nn.Linear(embed_dim, 3 * embed_dim, weight_attr, bias_attr=bias_attr)
        else:
            self.q_proj = nn.Linear(embed_dim, embed_dim, weight_attr, bias_attr=bias_attr)
            self.k_proj = nn.Linear(self.kdim, embed_dim, weight_attr, bias_attr=bias_attr)
            self.v_proj = nn.Linear(self.vdim, embed_dim, weight_attr, bias_attr=bias_attr)
        self.out_proj = nn.Linear(embed_dim, embed_dim, weight_attr, bias_attr=bias_attr)

    def _fuse_prepare_qkv(self, query, use_cache=False, cache=None):
        mix_layer = self.qkv_proj(query)
        mix_layer = paddle.reshape_(mix_layer, [0, 0, self.num_heads, 3 * self.head_dim])
        mix_layer = paddle.transpose(mix_layer, [0, 2, 1, 3])
        q, k, v = paddle.split(mix_layer, num_or_sections=3, axis=-1)

        assert not isinstance(cache, self.StaticCache), "cache currently does not support the StaticCache type"

        if isinstance(cache, self.Cache):
            # for decoder self-attention in inference
            k = tensor.concat([cache.k, k], axis=2)
            v = tensor.concat([cache.v, v], axis=2)
        if use_cache is True:
            cache = self.Cache(k, v)

        return (q, k, v, cache) if use_cache else (q, k, v, None)

    def _prepare_qkv(self, query, key, value, use_cache=False, cache=None):
        r"""
        Prapares linear projected queries, keys and values for usage of subsequnt
        multiple parallel attention. If `cache` is not None, using cached results
        to reduce redundant calculations.

        """
        q = self.q_proj(query)
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q = tensor.transpose(x=q, perm=[0, 2, 1, 3])

        if isinstance(cache, self.StaticCache):
            # for encoder-decoder attention in inference and has cached
            k, v = cache.k, cache.v
        else:
            k, v = self.compute_kv(key, value)

        if isinstance(cache, self.Cache):
            # for decoder self-attention in inference
            k = tensor.concat([cache.k, k], axis=2)
            v = tensor.concat([cache.v, v], axis=2)
        if use_cache is True:
            cache = self.Cache(k, v)

        return (q, k, v, None) if use_cache is False else (q, k, v, cache)

    def compute_kv(self, key, value):
        r"""
        Applies linear projection on input keys and values, then splits heads
        (reshape and transpose) to get keys and values from different representation
        subspaces. The results are used as key-values pairs for subsequent multiple
        parallel attention.

        It is part of calculations in multi-head attention, and is provided as
        a method to pre-compute and prefetch these results, thus we can use them
        to construct cache for inference.

        """
        k = self.k_proj(key)
        v = self.v_proj(value)
        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v = tensor.transpose(x=v, perm=[0, 2, 1, 3])
        return k, v

    def gen_cache(self, key, value=None, type=Cache):
        """
        Generates cache for `forward` usage in inference accroding to arguments.
        The generated cache is an instance of `MultiHeadAttention.Cache` or an
        instance of `MultiHeadAttention.StaticCache`.
        """
        if type == MultiHeadAttention.StaticCache:  # static_kv
            k, v = self.compute_kv(key, value)
            return self.StaticCache(k, v)
        elif value is None:  # incremental_state
            k = layers.fill_constant_batch_size_like(
                input=key, shape=[-1, self.num_heads, 0, self.head_dim], dtype=key.dtype, value=0
            )
            v = layers.fill_constant_batch_size_like(
                input=key, shape=[-1, self.num_heads, 0, self.head_dim], dtype=key.dtype, value=0
            )
            return self.Cache(k, v)
        else:
            # incremental_state with initial value, mainly for usage like UniLM
            return self.Cache(key, value)

    def forward(self, query, key, value, attn_mask=None, use_cache=False, cache=None):
        r"""
        Applies multi-head attention to map queries and a set of key-value pairs
        to outputs.
        """
        key = query if key is None else key
        value = query if value is None else value

        if self.fuse_attention_qkv:
            q, k, v, cache = self._fuse_prepare_qkv(query, use_cache, cache)
        else:
            q, k, v, cache = self._prepare_qkv(query, key, value, use_cache, cache)

        # scale dot product attention
        product = paddle.matmul(x=q * (self.head_dim**-0.5), y=k, transpose_y=True)

        if attn_mask is not None:
            product = product + attn_mask

        weights = F.softmax(product)
        if self.dropout:
            weights = F.dropout(weights, self.dropout, training=self.training, mode="upscale_in_train")

        out = tensor.matmul(weights, v)

        # combine heads
        out = tensor.transpose(out, perm=[0, 2, 1, 3])
        out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])

        # project to output
        out = self.out_proj(out)

        outs = [out]
        if self.need_weights:
            outs.append(weights)
        if use_cache:
            outs.append(cache)
        return out if len(outs) == 1 else tuple(outs)


class TransformerDecoder(nn.Layer):
    """
    TransformerDecoder is a stack of N decoder layers.
    """

    def __init__(self, decoder_layers, num_layers, norm=None, hidden_size=None):
        super(TransformerDecoder, self).__init__()

        self.num_layers = num_layers
        self.layers = decoder_layers
        self.norm = norm
        if norm == "LayerNorm":
            self.norm = nn.LayerNorm(hidden_size, epsilon=1e-5)
        elif norm is not None:
            raise ValueError("Only support LayerNorm")
        self.checkpoints = []

    def forward(
        self,
        tgt,
        memory,
        tgt_mask=None,
        memory_mask=None,
        use_cache=False,
        cache=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=False,
    ):
        r"""
        Applies a stack of N Transformer decoder layers on inputs. If `norm` is
        provided, also applies layer normalization on the output of last decoder
        layer.
        """
        output = tgt
        new_caches = [] if use_cache else None
        self.checkpoints = []
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None

        for i, mod in enumerate(self.layers):
            outputs = mod(
                output,
                memory,
                tgt_mask=tgt_mask,
                use_cache=use_cache,
                cache=cache[i] if cache is not None else cache,
                output_attentions=output_attentions,
            )
            # outputs = hidden_states if both use_cache and output_attentions are False
            # Otherwise, outputs = (hidden_states, attention if output_attentions, cache if use_cache)
            output = outputs[0] if (use_cache or output_attentions) else outputs
            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[1],)
            if use_cache:
                new_caches.append(outputs[-1])
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (output,)
            self.checkpoints.append(output.name)

        if self.norm is not None:
            output = self.norm(output)

        if not return_dict:
            temp_list = [output, new_caches, all_hidden_states, all_self_attentions]

            if not (use_cache or output_attentions or output_hidden_states):
                return output

            return tuple(v for v in temp_list if v is not None)

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=output,
            past_key_values=new_caches,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=None,
        )

    def gen_cache(self, memory, do_zip=False):
        r"""
        Generates cache for `forward` usage. The generated cache is a list, and
        each element in it is a tuple( :code:`(incremental_cache, static_cache)` )
        produced by `TransformerDecoderLayer.gen_cache`. See `TransformerDecoderLayer.gen_cache`
        for more details. If `do_zip` is True, apply `zip` on these tuples to get
        a list with two elements.
        """
        cache = [layer.gen_cache(memory) for layer in self.layers]
        if do_zip:
            cache = list(zip(*cache))
        return cache


class TransformerDecoderLayer(nn.Layer):
    """
    The transformer decoder layer.

    It contains multiheadattention and some linear layers.
    """

    def __init__(self, config):

        d_model = config.hidden_size
        nhead = config.num_attention_heads
        dim_feedforward = config.intermediate_size
        dropout = config.hidden_dropout_prob
        activation = config.hidden_act
        attn_dropout = config.attention_probs_dropout_prob
        act_dropout = config.hidden_dropout_prob
        normalize_before = getattr(config, "normalize_before", True)

        weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(mean=0.0, std=config.initializer_range))
        bias_attr = None

        self._config = locals()
        self._config.pop("self")
        self._config.pop("__class__", None)  # py3

        super(TransformerDecoderLayer, self).__init__()
        attn_dropout = dropout if attn_dropout is None else attn_dropout
        act_dropout = dropout if act_dropout is None else act_dropout
        self.normalize_before = normalize_before

        weight_attrs = _convert_param_attr_to_list(weight_attr, 3)
        bias_attrs = _convert_param_attr_to_list(bias_attr, 3)

        self.self_attn = MultiHeadAttention(
            config,
            need_weights=True,
            weight_attr=weight_attrs[0],
            bias_attr=bias_attrs[0],
        )
        self.linear1 = nn.Linear(d_model, dim_feedforward, weight_attrs[2], bias_attr=bias_attrs[2])
        self.linear2 = nn.Linear(dim_feedforward, d_model, weight_attrs[2], bias_attr=bias_attrs[2])

        self.norm1 = nn.LayerNorm(d_model, epsilon=1e-5)
        self.norm2 = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout1 = nn.Dropout(dropout, mode="upscale_in_train")
        self.dropout2 = nn.Dropout(act_dropout, mode="upscale_in_train")

        if activation == "gelu":
            self.activation = nn.GELU(approximate=True)
        else:
            self.activation = getattr(F, activation)

    def forward(self, tgt, memory, tgt_mask=None, use_cache=False, cache=None, output_attentions=False):
        residual = tgt

        if self.normalize_before:
            tgt = self.norm1(tgt)

        # self.self_attn(...) --> hidden_states, weights, (cache)
        if use_cache is False:
            tgt, attn_weights = self.self_attn(tgt, tgt, tgt, tgt_mask, use_cache, cache)
        else:
            tgt, attn_weights, incremental_cache = self.self_attn(tgt, tgt, tgt, tgt_mask, use_cache, cache)
        tgt = residual + self.dropout1(tgt)
        if not self.normalize_before:
            tgt = self.norm1(tgt)

        residual = tgt
        if self.normalize_before:
            tgt = self.norm2(tgt)
        tgt = self.dropout2(self.linear2(self.activation(self.linear1(tgt))))
        tgt = residual + tgt

        if not self.normalize_before:
            tgt = self.norm2(tgt)

        if not (output_attentions or use_cache):
            return tgt

        temp_list = [tgt, attn_weights if output_attentions else None, incremental_cache if use_cache else None]

        return tuple(v for v in temp_list if v is not None)

    def gen_cache(self, memory):
        incremental_cache = self.self_attn.gen_cache(memory, type=self.self_attn.Cache)
        return incremental_cache


class GPTEmbeddings(nn.Layer):
    """
    Include embeddings from word and position embeddings.
    """

    def __init__(
        self,
        vocab_size,
        hidden_size=768,
        hidden_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        initializer_range=0.02,
    ):
        super(GPTEmbeddings, self).__init__()
        self.word_embeddings = nn.Embedding(
            vocab_size,
            hidden_size,
            weight_attr=paddle.ParamAttr(initializer=nn.initializer.Normal(mean=0.0, std=initializer_range)),
        )

        self.position_embeddings = nn.Embedding(
            max_position_embeddings,
            hidden_size,
            weight_attr=paddle.ParamAttr(initializer=nn.initializer.Normal(mean=0.0, std=initializer_range)),
        )

        self.dropout = nn.Dropout(hidden_dropout_prob)

    def forward(self, input_ids, position_ids=None, inputs_embeddings=None):
        if input_ids is not None:
            input_shape = paddle.shape(input_ids)
            inputs_embeddings = self.word_embeddings(input_ids)
        else:
            input_shape = paddle.shape(inputs_embeddings)[:-1]

        if position_ids is None:
            ones = paddle.ones(input_shape, dtype="int64")
            seq_length = paddle.cumsum(ones, axis=-1)
            position_ids = seq_length - ones

        position_embeddings = self.position_embeddings(position_ids)
        embeddings = inputs_embeddings + position_embeddings
        embeddings = self.dropout(embeddings)
        return embeddings


[文档]class GPTPretrainedModel(PretrainedModel): """ An abstract class for pretrained GPT models. It provides GPT related `model_config_file`, `resource_files_names`, `pretrained_resource_files_map`, `pretrained_init_configuration`, `base_model_prefix` for downloading and loading pretrained models. See :class:`~paddlenlp.transformers.model_utils.PretrainedModel` for more details. """ pretrained_init_configuration = GPT_PRETRAINED_INIT_CONFIGURATION pretrained_resource_files_map = GPT_PRETRAINED_RESOURCE_FILES_MAP base_model_prefix = "gpt" config_class = GPTConfig @classmethod def _get_name_mappings(cls, config: GPTConfig) -> list[StateDictNameMapping]: mappings: list[StateDictNameMapping] = [] model_mappings = [ ["wte.weight", "embeddings.word_embeddings.weight"], ["wpe.weight", "embeddings.position_embeddings.weight"], ["ln_f.weight", "decoder.norm.weight"], ["ln_f.bias", "decoder.norm.bias"], ] for layer_index in range(config.num_hidden_layers): layer_mappings = [ [f"h.{layer_index}.ln_1.weight", f"decoder.layers.{layer_index}.norm1.weight"], [f"h.{layer_index}.ln_1.bias", f"decoder.layers.{layer_index}.norm1.bias"], [f"h.{layer_index}.ln_2.weight", f"decoder.layers.{layer_index}.norm2.weight"], [f"h.{layer_index}.ln_2.bias", f"decoder.layers.{layer_index}.norm2.bias"], [f"h.{layer_index}.mlp.c_fc.weight", f"decoder.layers.{layer_index}.linear1.weight"], [f"h.{layer_index}.mlp.c_fc.bias", f"decoder.layers.{layer_index}.linear1.bias"], [f"h.{layer_index}.mlp.c_proj.weight", f"decoder.layers.{layer_index}.linear2.weight"], [f"h.{layer_index}.mlp.c_proj.bias", f"decoder.layers.{layer_index}.linear2.bias"], [f"h.{layer_index}.attn.c_proj.weight", f"decoder.layers.{layer_index}.self_attn.out_proj.weight"], [f"h.{layer_index}.attn.c_proj.bias", f"decoder.layers.{layer_index}.self_attn.out_proj.bias"], # attention [ f"h.{layer_index}.attn.c_attn.weight", f"decoder.layers.{layer_index}.self_attn.q_proj.weight", "split", 0, ], [ f"h.{layer_index}.attn.c_attn.bias", f"decoder.layers.{layer_index}.self_attn.q_proj.bias", "split", 0, ], [ f"h.{layer_index}.attn.c_attn.weight", f"decoder.layers.{layer_index}.self_attn.k_proj.weight", "split", 1, ], [ f"h.{layer_index}.attn.c_attn.bias", f"decoder.layers.{layer_index}.self_attn.k_proj.bias", "split", 1, ], [ f"h.{layer_index}.attn.c_attn.weight", f"decoder.layers.{layer_index}.self_attn.v_proj.weight", "split", 2, ], [ f"h.{layer_index}.attn.c_attn.bias", f"decoder.layers.{layer_index}.self_attn.v_proj.bias", "split", 2, ], ] model_mappings.extend(layer_mappings) # downstream mappings if "GPT2Model" not in config.architectures: for mapping in model_mappings: mapping[0] = "transformer." + mapping[0] mapping[1] = "gpt." + mapping[1] if "GPT2ForTokenClassification" in config.architectures: model_mappings.extend([["classifier.weight", "classifier.weight", "transpose"]]) if "GPT2ForSequenceClassification" in config.architectures: model_mappings.extend([["score.weight", "score.weight", "transpose"]]) if "GPT2LMHeadModel" in config.architectures: model_mappings.append(["lm_head.weight", "lm_head.decoder_weight"]) mappings = [StateDictNameMapping(*mapping) for mapping in model_mappings] return mappings
[文档] def init_weights(self, layer): """Initialization hook""" if isinstance(layer, (nn.Linear, nn.Embedding)): # In the dygraph mode, use the `set_value` to reset the parameter directly, # and reset the `state_dict` to update parameter in static mode. if isinstance(layer.weight, paddle.Tensor): layer.weight.set_value( paddle.tensor.normal( mean=0.0, std=self.initializer_range if hasattr(self, "initializer_range") else self.gpt.config["initializer_range"], shape=layer.weight.shape, ) )
[文档]@register_base_model class GPTModel(GPTPretrainedModel): r""" The bare GPT Model transformer outputting raw hidden-states. This model inherits from :class:`~paddlenlp.transformers.model_utils.PretrainedModel`. Refer to the superclass documentation for the generic methods. This model is also a Paddle `paddle.nn.Layer <https://www.paddlepaddle.org.cn/documentation /docs/en/api/paddle/fluid/dygraph/layers/Layer_en.html>`__ subclass. Use it as a regular Paddle Layer and refer to the Paddle documentation for all matter related to general usage and behavior. Args: vocab_size (int): Vocabulary size of `inputs_ids` in `GPTModel`. Also is the vocab size of token embedding matrix. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling `GPTModel`. hidden_size (int, optional): Dimensionality of the embedding layer and decoder layer. Defaults to `768`. num_hidden_layers (int, optional): Number of hidden layers in the Transformer decoder. Defaults to `12`. num_attention_heads (int, optional): Number of attention heads for each attention layer in the Transformer decoder. Defaults to `12`. intermediate_size (int, optional): Dimensionality of the feed-forward (ff) layer in the decoder. Input tensors to ff layers are firstly projected from `hidden_size` to `intermediate_size`, and then projected back to `hidden_size`. Typically `intermediate_size` is larger than `hidden_size`. Defaults to `3072`. hidden_act (str, optional): The non-linear activation function in the feed-forward layer. ``"gelu"``, ``"relu"`` and any other paddle supported activation functions are supported. Defaults to `"gelu"`. hidden_dropout_prob (float, optional): The dropout probability for all fully connected layers in the embeddings and decoder. Defaults to `0.1`. attention_probs_dropout_prob (float, optional): The dropout probability used in MultiHeadAttention in all decoder layers to drop some attention target. Defaults to `0.1`. max_position_embeddings (int, optional): The maximum value of the dimensionality of position encoding, which dictates the maximum supported length of an input sequence. Defaults to `512`. type_vocab_size (int, optional): The vocabulary size of the `token_type_ids`. Defaults to `16`. .. note:: Please NOT using `type_vocab_size`, for it will be obsolete in the future.. initializer_range (float, optional): The standard deviation of the normal initializer. Default to `0.02`. .. note:: A normal_initializer initializes weight matrices as normal distributions. See :meth:`GPTPretrainedModel._init_weights()` for how weights are initialized in `GPTModel`. pad_token_id(int, optional): The index of padding token in the token vocabulary. Defaults to `0`. """ def __init__(self, config: GPTConfig): super(GPTModel, self).__init__(config) self.pad_token_id = config.pad_token_id self.eos_token_id = config.eos_token_id self.bos_token_id = config.bos_token_id self.eol_token_id = config.eol_token_id self.initializer_range = config.initializer_range self.hidden_size = config.hidden_size self.vocab_size = config.vocab_size self.bias = paddle.tril( paddle.ones([1, 1, config.max_position_embeddings, config.max_position_embeddings], dtype="int64") ) self.embeddings = GPTEmbeddings( config.vocab_size, config.hidden_size, config.hidden_dropout_prob, config.max_position_embeddings, config.type_vocab_size, self.initializer_range, ) decoder_layers = nn.LayerList() for i in range(config.num_hidden_layers): decoder_layers.append(TransformerDecoderLayer(config)) self.decoder = TransformerDecoder( decoder_layers, config.num_hidden_layers, norm="LayerNorm", hidden_size=config.hidden_size, ) self.apply(self.init_weights) self.checkpoints = []
[文档] def get_input_embeddings(self): return self.embeddings.word_embeddings
[文档] def set_input_embeddings(self, value): self.embeddings.word_embeddings = value
[文档] def forward( self, input_ids=None, position_ids=None, attention_mask=None, inputs_embeds=None, use_cache=False, cache=None, output_attentions=False, output_hidden_states=False, return_dict=False, ): r""" The GPTModel forward method, overrides the `__call__()` special method. Args: input_ids (Tensor, optional): Indices of input sequence tokens in the vocabulary. They are numerical representations of tokens that build the input sequence. Its data type should be `int64` and it has a shape of [batch_size, sequence_length]. Defaults to None. position_ids(Tensor, optional): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, max_position_embeddings - 1]``. Shape as `(batch_size, num_tokens)` and dtype as int64. Defaults to `None`. attention_mask (Tensor, optional): Mask used in self attention to avoid performing attention to some unwanted positions, usually the subsequent positions. It is a tensor with shape broadcasted to `[batch_size, num_attention_heads, sequence_length, sequence_length]`. It is a tensor with shape broadcasted to `[batch_size, num_attention_heads, sequence_length, sequence_length]`. For example, its shape can be [batch_size, sequence_length], [batch_size, sequence_length, sequence_length], [batch_size, num_attention_heads, sequence_length, sequence_length]. Its data type should be int64. The `masked` tokens have `0` values, and the `unmasked` tokens have `1` values. Defaults to `None`, which means nothing needed to be prevented attention to. inputs_embeds (Tensor, optional): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation of shape `(batch_size, sequence_length, hidden_size)`. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. Default to None. use_cache (bool, optional): Whether or not to use cache. Defaults to `False`. If set to `True`, key value states will be returned and can be used to speed up decoding. cache (list, optional): It is a list, and each element in the list is a tuple `(incremental_cache, static_cache)`. See `TransformerDecoder.gen_cache <https://github.com/PaddlePaddle/Paddle/blob/release/2.1/python/paddle/nn/layer/transformer.py#L1060>`__ for more details. It is only used for inference and should be None for training. Default to `None`. output_attentions (bool, optional): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. Defaults to `False`. output_hidden_states (bool, optional): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. Defaults to `False`. return_dict (bool, optional): Whether to return a :class:`~paddlenlp.transformers.model_outputs.BaseModelOutputWithPastAndCrossAttentions` object. If `False`, the output will be a tuple of tensors. Defaults to `False`. Returns: An instance of :class:`~paddlenlp.transformers.model_outputs.BaseModelOutputWithPastAndCrossAttentions` if `return_dict=True`. Otherwise it returns a tuple of tensors corresponding to ordered and not None (depending on the input arguments) fields of :class:`~paddlenlp.transformers.model_outputs.BaseModelOutputWithPastAndCrossAttentions`. Especially, When `return_dict=output_hidden_states=output_attentions=False`, returns tensor `outputs` which is the output at the last layer of the model. Its data type should be float32 and has a shape of [batch_size, sequence_length, hidden_size]. Example: .. code-block:: import paddle from paddlenlp.transformers import GPTModel, GPTTokenizer tokenizer = GPTTokenizer.from_pretrained('gpt2-medium-en') model = GPTModel.from_pretrained('gpt2-medium-en') inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!", return_token_type_ids=False) inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} output = model(**inputs) """ self.checkpoints = [] if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = paddle.shape(input_ids) input_ids = input_ids.reshape((-1, input_shape[-1])) elif inputs_embeds is not None: input_shape = paddle.shape(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if position_ids is None: past_length = 0 if cache is not None: past_length = paddle.shape(cache[0].k)[-2] position_ids = paddle.arange(past_length, input_shape[-1] + past_length, dtype="int64") position_ids = position_ids.unsqueeze(0) position_ids = paddle.expand(position_ids, input_shape) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, inputs_embeddings=inputs_embeds ) # TODO, use registered buffer length = input_shape[-1] if cache is not None: cache_length = paddle.shape(cache[0].k)[2] length = length + cache_length else: cache_length = 0 causal_mask = self.bias[:, :, cache_length:length, :length] if attention_mask is not None: if attention_mask.dtype != paddle.int64: attention_mask = paddle.cast(attention_mask, dtype=paddle.int64) if len(attention_mask.shape) == 2: attention_mask = attention_mask[:, None, None, :] attention_mask = (1.0 - (attention_mask & causal_mask)) * -1e4 else: attention_mask = (1.0 - causal_mask) * -1e4 # The tensor returned by triu not in static graph. attention_mask.stop_gradient = True outputs = self.decoder( embedding_output, memory=None, tgt_mask=attention_mask, use_cache=use_cache, cache=cache, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) if output_hidden_states: if return_dict: outputs.hidden_states = (embedding_output,) + outputs.hidden_states else: # outputs is a tuple idx = 2 if use_cache else 1 all_hidden_states = (embedding_output,) + outputs[idx] outputs = outputs[:idx] + (all_hidden_states) + outputs[idx + 1 :] self.checkpoints.extend(self.decoder.checkpoints) return outputs
[文档]class GPTForPretraining(GPTPretrainedModel): """ GPT Model with pretraining tasks on top. Args: gpt (:class:`GPTModel`): An instance of :class:`GPTModel`. """ def __init__(self, config: GPTConfig): super(GPTForPretraining, self).__init__(config) self.gpt = GPTModel(config) self.apply(self.init_weights)
[文档] def forward( self, input_ids, position_ids=None, attention_mask=None, masked_positions=None, use_cache=False, cache=None ): r""" Args: input_ids (Tensor, optional): See :class:`GPTModel`. position_ids (Tensor, optional): See :class:`GPTModel`. attention_mask (Tensor, optional): See :class:`GPTModel`. use_cache (bool, optional): See :class:`GPTModel`. cache (Tensor, optional): See :class:`GPTModel`. Returns: Tensor or tuple: Returns tensor `logits` or tuple `(logits, cached_kvs)`. If `use_cache` is True, tuple (`logits, cached_kvs`) will be returned. Otherwise, tensor `logits` will be returned. `logits` is the output of the gpt model. `cache_kvs` is the cache output of gpt model if `use_cache` is True. Example: .. code-block:: import paddle from paddlenlp.transformers import GPTForPretraining, GPTTokenizer tokenizer = GPTTokenizer.from_pretrained('gpt2-medium-en') model = GPTForPretraining.from_pretrained('gpt2-medium-en') inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!", return_token_type_ids=False) inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} output = model(**inputs,use_cache=True) logits = output[0] cached_kvs = output[1] """ outputs = self.gpt( input_ids, position_ids=position_ids, attention_mask=attention_mask, use_cache=use_cache, cache=cache ) if use_cache: encoder_outputs, cached_kvs = outputs[:2] else: encoder_outputs = outputs logits = paddle.matmul(encoder_outputs, self.gpt.embeddings.word_embeddings.weight, transpose_y=True) if use_cache: return logits, cached_kvs else: return logits
[文档]class GPTPretrainingCriterion(paddle.nn.Layer): """ Criterion for GPT. It calculates the final loss. """ def __init__(self): super(GPTPretrainingCriterion, self).__init__() self.loss_func = paddle.nn.CrossEntropyLoss(reduction="none")
[文档] def forward(self, prediction_scores, masked_lm_labels, loss_mask): """ Args: prediction_scores(Tensor): The logits of masked token prediction. Its data type should be float32 and its shape is [batch_size, sequence_length, vocab_size]. masked_lm_labels(Tensor): The labels of the masked language modeling, the dimensionality of `masked_lm_labels` is equal to `prediction_scores`. Its data type should be int64 and its shape is [batch_size, sequence_length, 1]. loss_mask(Tensor): Mask used for calculating the loss of the masked language modeling to avoid calculating some unwanted tokens. Its data type should be float32 and its shape is [batch_size, sequence_length, 1]. Returns: Tensor: The pretraining loss. Its data type should be float32 and its shape is [1]. """ masked_lm_loss = self.loss_func(prediction_scores, masked_lm_labels.unsqueeze(2)) loss_mask = loss_mask.reshape([-1]) masked_lm_loss = paddle.sum(masked_lm_loss.reshape([-1]) * loss_mask) loss = masked_lm_loss / loss_mask.sum() return loss
[文档]class GPTForGreedyGeneration(GPTPretrainedModel): """ The generate model for GPT-2. It use the greedy strategy and generate the output sequence with highest probability. Args: gpt (:class:`GPTModel`): An instance of `paddlenlp.transformers.GPTModel`. max_predict_len(int): The max length of the prediction. """ def __init__(self, config: GPTConfig, max_predict_len: int = 32): super(GPTForGreedyGeneration, self).__init__(config) self.gpt = GPTModel(config) self.max_predict_len = paddle.to_tensor(max_predict_len, dtype="int32") self.eol_token_id = config.eol_token_id self.apply(self.init_weights)
[文档] def model( self, input_ids, position_ids=None, attention_mask=None, masked_positions=None, use_cache=False, cache=None ): r""" Args: input_ids (Tensor, optional): See :class:`GPTModel`. position_ids (Tensor, optional): See :class:`GPTModel`. attention_mask (Tensor, optional): See :class:`GPTModel`. use_cache (bool, optional): See :class:`GPTModel`. cache (Tensor, optional): See :class:`GPTModel`. Returns: Tensor or tuple: Returns tensor `logits` or tuple `(logits, cached_kvs)`. If `use_cache` is True, tuple (`logits, cached_kvs`) will be returned. Otherwise, tensor `logits` will be returned. `logits` is the output of the gpt model. `cache_kvs` is the cache output of gpt model if `use_cache` is True. """ outputs = self.gpt( input_ids, position_ids=position_ids, attention_mask=attention_mask, use_cache=use_cache, cache=cache ) if use_cache: encoder_outputs, cached_kvs = outputs[:2] else: encoder_outputs = outputs logits = paddle.matmul(encoder_outputs, self.gpt.embeddings.word_embeddings.weight, transpose_y=True) if use_cache: return logits, cached_kvs else: return logits
[文档] def forward(self, input_ids): """ Args: input_ids(Tensor): See :class:`GPTModel`. Returns: Tensor: Returns tensor `src_ids`, which means the indices of output sequence tokens in the vocabulary. They are numerical representations of tokens that build the output sequence. """ output, cached_kvs = self.model(input_ids, use_cache=True, cache=None) src_ids = input_ids nid = paddle.argmax(output[:, -1, :], axis=-1).reshape([-1, 1]) src_ids = paddle.concat([src_ids, nid], axis=1) cur_len = 0 while cur_len < self.max_predict_len: output, cached_kvs = self.model(nid, use_cache=True, cache=cached_kvs) nid = paddle.argmax(output[:, -1, :], axis=-1).reshape([-1, 1]) src_ids = paddle.concat([src_ids, nid], axis=1) cur_len += 1 if paddle.max(nid) == self.eol_token_id: break return src_ids
class GPTLMHead(nn.Layer): def __init__(self, hidden_size, vocab_size, embedding_weights=None): super(GPTLMHead, self).__init__() self.decoder_weight = ( self.create_parameter(shape=[vocab_size, hidden_size], dtype=paddle.get_default_dtype(), is_bias=True) if embedding_weights is None else embedding_weights ) def forward(self, hidden_states): logits = paddle.tensor.matmul(hidden_states, self.decoder_weight, transpose_y=True) return logits
[文档]class GPTLMHeadModel(GPTPretrainedModel): """ The GPT Model with a `language modeling` head on top. Args: gpt (:class:`GPTModel`): An instance of :class:`GPTModel`. """ def __init__(self, config: GPTConfig): super(GPTLMHeadModel, self).__init__(config) self.gpt = GPTModel(config) self.lm_head = GPTLMHead( self.gpt.config["hidden_size"], self.gpt.config["vocab_size"], self.gpt.embeddings.word_embeddings.weight ) self.apply(self.init_weights)
[文档] def forward( self, input_ids=None, position_ids=None, attention_mask=None, inputs_embeds=None, use_cache=False, cache=None, labels=None, output_attentions=False, output_hidden_states=False, return_dict=False, ): r""" Args: input_ids (Tensor, optional): See :class:`GPTModel`. position_ids (Tensor, optional): See :class:`GPTModel`. attention_mask (Tensor, optional): See :class:`GPTModel`. inputs_embeds (Tensor, optional): See :class:`GPTModel`. use_cache (bool, optional): See :class:`GPTModel`. cache (Tensor, optional): See :class:`GPTModel`. labels (paddle.Tensor, optional): A Tensor of shape `(batch_size, sequence_length)`. Labels for language modeling. Note that the labels are shifted inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., vocab_size]` Defaults to None. output_attentions (bool, optional): See :class:`GPTModel`. output_hidden_states (bool, optional): See :class:`GPTModel`. return_dict (bool, optional): See :class:`GPTModel`. Returns: An instance of :class:`~paddlenlp.transformers.model_outputs.BaseModelOutputWithPastAndCrossAttentions` if `return_dict=True`. Otherwise it returns a tuple of tensors corresponding to ordered and not None (depending on the input arguments) fields of :class:`~paddlenlp.transformers.model_outputs.BaseModelOutputWithPastAndCrossAttentions`. Especialy, when `return_dict=use_cache=output_attentions=output_hidden_states=False`, returns a tensor `logits` which is the output of the gpt model. """ input_type = type(input_ids) if input_ids is not None else type(inputs_embeds) outputs = self.gpt( input_ids, position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, cache=cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if isinstance(outputs, input_type): hidden_states = outputs else: hidden_states = outputs[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[:, :-1, :] shift_labels = labels[:, 1:] # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.reshape((-1, shift_logits.shape[-1])), shift_labels.reshape((-1,))) # outputs = [output, all_hidden_states, new_caches, all_self_attentions] if not return_dict: if isinstance(outputs, input_type): return (loss, logits) if loss is not None else logits outputs = (logits,) + outputs[1:] return ((loss,) + outputs) if loss is not None else outputs return CausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, )
def prepare_fast_entry(self, kwargs): from paddlenlp.ops import FasterGPT use_fp16_decoding = kwargs.get("use_fp16_decoding", False) decode_strategy = kwargs.get("decode_strategy") if decode_strategy == "beam_search": raise AttributeError("'beam_search' is not supported yet in the fast version of GPT") # Currently, FasterTransformer only support restricted size_per_head. size_per_head = self.gpt.config["hidden_size"] // self.gpt.config["num_attention_heads"] if size_per_head not in [32, 64, 80, 96, 128]: raise AttributeError( "'size_per_head = %d' is not supported yet in the fast version of GPT" % size_per_head ) if kwargs["forced_bos_token_id"] is not None: # not support for min_length yet in the fast version raise AttributeError("'forced_bos_token_id != None' is not supported yet in the fast version") if kwargs["min_length"] != 0: # not support for min_length yet in the fast version raise AttributeError("'min_length != 0' is not supported yet in the fast version") self._fast_entry = FasterGPT(self, use_fp16_decoding=use_fp16_decoding).forward return self._fast_entry def prepare_inputs_for_generation(self, input_ids, use_cache=False, cache=None, **kwargs): # only last token for inputs_ids if cache is defined in kwargs position_ids = kwargs.get("position_ids", None) attention_mask = kwargs.get("attention_mask", None) if attention_mask is not None and attention_mask.ndim == 4: attention_mask = attention_mask[:, -1:, -1:, :] if cache is not None: input_ids = input_ids[:, -1].unsqueeze(-1) if position_ids is not None: position_ids = position_ids[:, -1].unsqueeze(-1) return { "input_ids": input_ids, "position_ids": position_ids, "attention_mask": attention_mask, "use_cache": use_cache, "cache": cache, } @staticmethod def prepare_attention_mask_for_generation(input_ids, pad_token_id, eos_token_id): is_pad_token_in_inputs_ids = (pad_token_id is not None) and paddle.any( input_ids == pad_token_id ).numpy().item() is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or ( (eos_token_id is not None) and (pad_token_id != eos_token_id) ) if is_pad_token_in_inputs_ids and is_pad_token_not_equal_to_eos_token_id: attention_mask = (input_ids != pad_token_id).astype("int64") else: attention_mask = paddle.ones_like(input_ids, dtype="int64") return paddle.unsqueeze(attention_mask, axis=[1, 2]) def __getattr__(self, name): try: return super().__getattr__(name) except AttributeError: try: return getattr(getattr(self, self.base_model_prefix), name) except AttributeError: return getattr(self, self.base_model_prefix).config[name]
[文档]class GPTForTokenClassification(GPTPretrainedModel): """ GPT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. Args: gpt (:class:`GPTModel`): An instance of GPTModel. num_classes (int, optional): The number of classes. Defaults to `2`. dropout (float, optional): The dropout probability for output of GPT. If None, use the same value as `hidden_dropout_prob` of `GPTModel` instance `gpt`. Defaults to None. """ def __init__(self, config: GPTConfig): super(GPTForTokenClassification, self).__init__(config) self.num_classes = config.num_labels self.gpt = GPTModel(config) # allow gpt to be config dropout_p = config.hidden_dropout_prob if config.classifier_dropout is None else config.classifier_dropout self.dropout = nn.Dropout(dropout_p) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.apply(self.init_weights)
[文档] def forward( self, input_ids=None, position_ids=None, attention_mask=None, inputs_embeds=None, labels=None, output_attentions=False, output_hidden_states=False, return_dict=False, ): r""" The GPTForTokenClassification forward method, overrides the __call__() special method. Args: input_ids (Tensor, optional): See :class:`GPTModel`. position_ids(Tensor, optional): See :class:`GPTModel`. attention_mask (list, optional): See :class:`GPTModel`. inputs_embeds (Tensor, optional): See :class:`GPTModel`. labels (Tensor, optional): Labels of shape `(batch_size, sequence_length)` for computing the sequence classification/regression loss. Indices should be in `[0, ..., num_labels - 1]`. If `num_labels == 1` a regression loss is computed (Mean-Square loss), If `num_labels > 1` a classification loss is computed (Cross-Entropy). Defaults to None. output_attentions (bool, optional): See :class:`GPTModel`. output_hidden_states (bool, optional): See :class:`GPTModel`. return_dict (bool, optional): See :class:`GPTModel`. Returns: An instance of :class:`~paddlenlp.transformers.model_outputs.TokenClassifierOutput` if `return_dict=True`. Otherwise it returns a tuple of tensors corresponding to ordered and not None (depending on the input arguments) fields of :class:`~paddlenlp.transformers.model_outputs.TokenClassifierOutput`. Especialy, when `return_dict=output_attentions=output_hidden_states=False`, returns tensor `logits`, a tensor of the input token classification logits. Shape as `[batch_size, sequence_length, num_classes]` and dtype as `float32`. Example: .. code-block:: import paddle from paddlenlp.transformers import GPTForTokenClassification, GPTTokenizer tokenizer = GPTTokenizer.from_pretrained('gpt2-medium-en') model = GPTForTokenClassification.from_pretrained('gpt2-medium-en') inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!", return_token_type_ids=False) inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} logits = model(**inputs) """ input_type = type(input_ids) if input_ids is not None else type(inputs_embeds) sequence_output = self.gpt( input_ids, position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if isinstance(sequence_output, input_type): hidden_states = sequence_output else: hidden_states = sequence_output[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.reshape((-1, self.num_classes)), labels.reshape((-1,))) if not return_dict: if isinstance(sequence_output, input_type): return (loss, logits) if loss is not None else logits outputs = (logits,) + sequence_output[1:] return ((loss,) + outputs) if loss is not None else outputs return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=sequence_output.hidden_states, attentions=sequence_output.attentions, )
[文档]class GPTForSequenceClassification(GPTPretrainedModel): """ GPT Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. Args: gpt (:class:`GPTModel`): An instance of GPTModel. num_classes (int, optional): The number of classes. Defaults to `2`. """ def __init__(self, config: GPTConfig): super(GPTForSequenceClassification, self).__init__(config) self.gpt = GPTModel(config) # allow gpt to be config self.score = nn.Linear(config.hidden_size, config.num_labels, bias_attr=False) self.apply(self.init_weights)
[文档] def forward( self, input_ids=None, position_ids=None, attention_mask=None, inputs_embeds=None, labels=None, use_cache=False, output_attentions=False, output_hidden_states=False, return_dict=False, ): r""" The GPTForSequenceClassification forward method, overrides the __call__() special method. Args: input_ids (Tensor, optional): See :class:`GPTModel`. position_ids(Tensor, optional): See :class:`GPTModel`. attention_mask (list, optional): See :class:`GPTModel`. inputs_embeds (Tensor, optional): See :class:`GPTModel`. labels (Tensor, optional): Labels of shape `(batch_size, sequence_length)` for computing the sequence classification/regression loss. Indices should be in `[0, ..., num_labels - 1]`. If `num_labels == 1` a regression loss is computed (Mean-Square loss), If `num_labels > 1` a classification loss is computed (Cross-Entropy). Defaults to None. use_cache (bool, optional): See :classL `GPTModel`. output_attentions (bool, optional): See :class:`GPTModel`. output_hidden_states (bool, optional): See :class:`GPTModel`. return_dict (bool, optional): See :class:`GPTModel`. Returns: An instance of :class:`~paddlenlp.transformers.model_outputs.SequenceClassifierOutputWithPast` if `return_dict=True`. Otherwise it returns a tuple of tensors corresponding to ordered and not None (depending on the input arguments) fields of :class:`~paddlenlp.transformers.model_outputs.SequenceClassifierOutputWithPast`. Especialy, when `return_dict=output_attentions=output_hidden_states=False`, returns tensor `logits`, a tensor of the input text classification logits. Shape as `[batch_size, num_classes]` and dtype as float32. Example: .. code-block:: import paddle from paddlenlp.transformers import GPTForSequenceClassification, GPTTokenizer tokenizer = GPTTokenizer.from_pretrained('gpt2-medium-en') model = GPTForSequenceClassification.from_pretrained('gpt2-medium-en') inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!", return_token_type_ids=False) inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} logits = model(**inputs) """ input_type = type(input_ids) if input_ids is not None else type(inputs_embeds) # sequence_output shape [bs, seq_len, hidden_size] sequence_output = self.gpt( input_ids, position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if isinstance(sequence_output, input_type): hidden_states = sequence_output else: hidden_states = sequence_output[0] # logits shape [bs, seq_len, num_class] logits = self.score(hidden_states) # padding index maybe 0 eos_token_id = self.gpt.config.eos_token_id or 0 # sequence_lengths shape [bs,] if input_ids is not None: sequence_lengths = (input_ids != eos_token_id).astype("int64").sum(axis=-1) - 1 else: inputs_shape = paddle.shape(inputs_embeds)[:-1] sequence_lengths = paddle.ones(inputs_shape[:-1], dtype="int64") * (inputs_shape[1] - 1) logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits.gather_nd( paddle.stack([paddle.arange(paddle.shape(logits)[0]), sequence_lengths], axis=-1) ) loss = None if labels is not None: if self.num_classes == 1: loss_fct = MSELoss() loss = loss_fct(pooled_logits, labels) elif labels.dtype == paddle.int64 or labels.dtype == paddle.int32: loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.reshape((-1, self.num_classes)), labels.reshape((-1,))) else: loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: if isinstance(sequence_output, input_type): return (loss, pooled_logits) if loss is not None else pooled_logits outputs = (pooled_logits,) + sequence_output[1:] return ((loss,) + outputs) if loss is not None else outputs return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=sequence_output.past_key_values, hidden_states=sequence_output.hidden_states, attentions=sequence_output.attentions, )
GPTForCausalLM = GPTLMHeadModel