paddlenlp.experimental.model_utils 源代码

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import io
import json
import os
import six
import logging
import inspect
from shutil import copyfile

import paddle
import paddle.fluid.core as core
from paddle.nn import Layer
# TODO(fangzeyang) Temporary fix and replace by paddle framework downloader later
from paddlenlp.utils.downloader import get_path_from_url, COMMUNITY_MODEL_PREFIX
from paddlenlp.utils.env import MODEL_HOME
from paddlenlp.utils.log import logger

from paddlenlp.transformers import PretrainedModel
from paddlenlp.experimental import FasterTokenizer

__all__ = ['FasterPretrainedModel']


def load_vocabulary(filepath):
    token_to_idx = {}
    with io.open(filepath, 'r', encoding='utf-8') as f:
        for index, line in enumerate(f):
            token = line.rstrip('\n')
            token_to_idx[token] = int(index)
    return token_to_idx


[文档]class FasterPretrainedModel(PretrainedModel): def to_static(self, output_path): self.eval() # Convert to static graph with specific input description model = paddle.jit.to_static(self, input_spec=[ paddle.static.InputSpec( shape=[None, None], dtype=core.VarDesc.VarType.STRINGS) ]) paddle.jit.save(model, output_path) logger.info("Already save the static model to the path %s" % output_path)
[文档] @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs): """ Creates an instance of `PretrainedModel`. Model weights are loaded by specifying name of a built-in pretrained model, or a community contributed model, or a local file directory path. Args: pretrained_model_name_or_path (str): Name of pretrained model or dir path to load from. The string can be: - Name of a built-in pretrained model - Name of a community-contributed pretrained model. - Local directory path which contains model weights file("model_state.pdparams") and model config file ("model_config.json"). *args (tuple): Position arguments for model `__init__`. If provided, use these as position argument values for model initialization. **kwargs (dict): Keyword arguments for model `__init__`. If provided, use these to update pre-defined keyword argument values for model initialization. If the keyword is in `__init__` argument names of base model, update argument values of the base model; else update argument values of derived model. Returns: PretrainedModel: An instance of `PretrainedModel`. Example: .. code-block:: from paddlenlp.transformers import BertForSequenceClassification # Name of built-in pretrained model model = BertForSequenceClassification.from_pretrained('bert-base-uncased') # Name of community-contributed pretrained model model = BertForSequenceClassification.from_pretrained('yingyibiao/bert-base-uncased-sst-2-finetuned') # Load from local directory path model = BertForSequenceClassification.from_pretrained('./my_bert/') """ pretrained_models = list(cls.pretrained_init_configuration.keys()) resource_files = {} init_configuration = {} # From built-in pretrained models if pretrained_model_name_or_path in pretrained_models: for file_id, map_list in cls.pretrained_resource_files_map.items(): resource_files[file_id] = map_list[ pretrained_model_name_or_path] init_configuration = copy.deepcopy( cls.pretrained_init_configuration[pretrained_model_name_or_path] ) # From local dir path elif os.path.isdir(pretrained_model_name_or_path): for file_id, file_name in cls.resource_files_names.items(): full_file_name = os.path.join(pretrained_model_name_or_path, file_name) resource_files[file_id] = full_file_name resource_files["model_config_file"] = os.path.join( pretrained_model_name_or_path, cls.model_config_file) else: # Assuming from community-contributed pretrained models for file_id, file_name in cls.resource_files_names.items(): full_file_name = os.path.join(COMMUNITY_MODEL_PREFIX, pretrained_model_name_or_path, file_name) resource_files[file_id] = full_file_name resource_files["model_config_file"] = os.path.join( COMMUNITY_MODEL_PREFIX, pretrained_model_name_or_path, cls.model_config_file) default_root = os.path.join(MODEL_HOME, pretrained_model_name_or_path) resolved_resource_files = {} for file_id, file_path in resource_files.items(): if file_path is None or os.path.isfile(file_path): resolved_resource_files[file_id] = file_path continue path = os.path.join(default_root, file_path.split('/')[-1]) if os.path.exists(path): logger.info("Already cached %s" % path) resolved_resource_files[file_id] = path else: logger.info("Downloading %s and saved to %s" % (file_path, default_root)) try: resolved_resource_files[file_id] = get_path_from_url( file_path, default_root) except RuntimeError as err: logger.error(err) raise RuntimeError( f"Can't load weights for '{pretrained_model_name_or_path}'.\n" f"Please make sure that '{pretrained_model_name_or_path}' is:\n" "- a correct model-identifier of built-in pretrained models,\n" "- or a correct model-identifier of community-contributed pretrained models,\n" "- or the correct path to a directory containing relevant modeling files(model_weights and model_config).\n" ) # Prepare model initialization kwargs # Did we saved some inputs and kwargs to reload ? model_config_file = resolved_resource_files.pop("model_config_file", None) if model_config_file is not None: with io.open(model_config_file, encoding="utf-8") as f: init_kwargs = json.load(f) else: init_kwargs = init_configuration # position args are stored in kwargs, maybe better not include init_args = init_kwargs.pop("init_args", ()) # class name corresponds to this configuration init_class = init_kwargs.pop("init_class", cls.base_model_class.__name__) # Check if the loaded config matches the current model class's __init__ # arguments. If not match, the loaded config is for the base model class. if init_class == cls.base_model_class.__name__: base_args = init_args base_kwargs = init_kwargs derived_args = () derived_kwargs = {} base_arg_index = None else: # extract config for base model derived_args = list(init_args) derived_kwargs = init_kwargs base_arg = None for i, arg in enumerate(init_args): if isinstance(arg, dict) and "init_class" in arg: assert arg.pop( "init_class") == cls.base_model_class.__name__, ( "pretrained base model should be {}").format( cls.base_model_class.__name__) base_arg_index = i base_arg = arg break for arg_name, arg in init_kwargs.items(): if isinstance(arg, dict) and "init_class" in arg: assert arg.pop( "init_class") == cls.base_model_class.__name__, ( "pretrained base model should be {}").format( cls.base_model_class.__name__) base_arg_index = arg_name base_arg = arg break base_args = base_arg.pop("init_args", ()) base_kwargs = base_arg if cls == cls.base_model_class: # Update with newly provided args and kwargs for base model base_args = base_args if not args else args base_kwargs.update(kwargs) vocab_file = resolved_resource_files.pop("vocab_file", None) if vocab_file and base_kwargs.get("vocab_file", None) is None: base_kwargs["vocab_file"] = vocab_file assert base_kwargs.get("vocab_file", None) is not None, f"The vocab " f"file is None. Please reload the class {cls.__name__} with pretrained_name." model = cls(*base_args, **base_kwargs) else: # Update with newly provided args and kwargs for derived model base_parameters_dict = inspect.signature( cls.base_model_class.__init__).parameters for k, v in kwargs.items(): if k in base_parameters_dict: base_kwargs[k] = v vocab_file = resolved_resource_files.pop("vocab_file", None) if vocab_file and base_kwargs.get("vocab_file", None) is None: base_kwargs["vocab_file"] = vocab_file assert base_kwargs.get("vocab_file", None) is not None, f"The vocab " f"file is None. Please reload the class {cls.__name__} with pretrained_name." base_model = cls.base_model_class(*base_args, **base_kwargs) if base_arg_index is not None: derived_args[base_arg_index] = base_model else: derived_args = (base_model, ) # assume at the first position derived_args = derived_args if not args else args derived_parameters_dict = inspect.signature(cls.__init__).parameters for k, v in kwargs.items(): if k in derived_parameters_dict: derived_kwargs[k] = v model = cls(*derived_args, **derived_kwargs) # Maybe need more ways to load resources. weight_path = resolved_resource_files["model_state"] assert weight_path.endswith( ".pdparams"), "suffix of weight must be .pdparams" state_dict = paddle.load(weight_path) logger.info("Loaded parameters from %s" % weight_path) # Make sure we are able to load base models as well as derived models # (with heads) start_prefix = "" model_to_load = model state_to_load = state_dict unexpected_keys = [] missing_keys = [] if not hasattr(model, cls.base_model_prefix) and any( s.startswith(cls.base_model_prefix) for s in state_dict.keys()): # base model state_to_load = {} start_prefix = cls.base_model_prefix + "." for k, v in state_dict.items(): if k.startswith(cls.base_model_prefix): state_to_load[k[len(start_prefix):]] = v else: unexpected_keys.append(k) if hasattr(model, cls.base_model_prefix) and not any( s.startswith(cls.base_model_prefix) for s in state_dict.keys()): # derived model (base model with heads) model_to_load = getattr(model, cls.base_model_prefix) for k in model.state_dict().keys(): if not k.startswith(cls.base_model_prefix): missing_keys.append(k) if len(missing_keys) > 0: logger.info( "Weights of {} not initialized from pretrained model: {}". format(model.__class__.__name__, missing_keys)) if len(unexpected_keys) > 0: logger.info( "Weights from pretrained model not used in {}: {}".format( model.__class__.__name__, unexpected_keys)) if paddle.in_dynamic_mode(): model_to_load.set_state_dict(state_to_load) return model return model, state_to_load
@staticmethod def load_vocabulary(filepath): token_to_idx = {} with io.open(filepath, 'r', encoding='utf-8') as f: for index, line in enumerate(f): token = line.rstrip('\n') token_to_idx[token] = int(index) return token_to_idx
[文档] def save_pretrained(self, save_dir): """ Saves model configuration and related resources (model state) as files under `save_dir`. The model configuration would be saved into a file named "model_config.json", and model state would be saved into a file named "model_state.pdparams". The `save_dir` can be used in `from_pretrained` as argument value of `pretrained_model_name_or_path` to re-load the trained model. Args: save_dir (str): Directory to save files into. Example: .. code-block:: from paddlenlp.transformers import BertForSequenceClassification model = BertForSequenceClassification.from_pretrained('bert-base-uncased') model.save_pretrained('./trained_model/') # reload from save_directory model = BertForSequenceClassification.from_pretrained('./trained_model/') """ assert not os.path.isfile( save_dir ), "Saving directory ({}) should be a directory, not a file".format( save_dir) os.makedirs(save_dir, exist_ok=True) # Save model config self.save_model_config(save_dir) # Save model if paddle.in_dynamic_mode(): file_name = os.path.join( save_dir, list(self.resource_files_names.values())[0]) paddle.save(self.state_dict(), file_name) else: logger.warning( "Save pretrained model only supported dygraph mode for now!") # Save resources file self.save_resources(save_dir)
[文档] def save_resources(self, save_directory): """ Save tokenizer related resources to `resource_files_names` indicating files under `save_directory` by copying directly. Override it if necessary. Args: save_directory (str): Directory to save files into. """ for name, file_name in self.resource_files_names.items(): src_path = self.init_config['init_args'][0].get(name, None) dst_path = os.path.join(save_directory, file_name) if src_path and os.path.abspath(src_path) != os.path.abspath( dst_path): copyfile(src_path, dst_path)