Source code for paddlenlp.utils.batch_sampler

#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division, print_function

import math

import paddle

__all__ = ["DistributedBatchSampler"]


[docs] class DistributedBatchSampler(paddle.io.BatchSampler): """Sampler that restricts data loading to a subset of the dataset. In such case, each process can pass a DistributedBatchSampler instance as a DataLoader sampler, and load a subset of the original dataset that is exclusive to it. .. note:: Dataset is assumed to be of constant size. Args: dataset(paddle.io.Dataset): this could be a `paddle.io.Dataset` implement or other python object which implemented `__len__` for BatchSampler to get sample number of data source. batch_size(int): sample indice number in a mini-batch indices. num_replicas(int, optional): porcess number in distributed training. If :attr:`num_replicas` is None, :attr:`num_replicas` will be retrieved from :code:`paddle.distributed.ParallenEnv`. Default None. rank(int, optional): the rank of the current process among :attr:`num_replicas` processes. If :attr:`rank` is None, :attr:`rank` is retrieved from :code:`paddle.distributed.ParallenEnv`. Default None. shuffle(bool): whther to shuffle indices order before genrating batch indices. Default False. drop_last(bool): whether drop the last incomplete batch dataset size is not divisible by the batch size. Default False Examples: .. code-block:: python import numpy as np from paddle.io import Dataset, DistributedBatchSampler # init with dataset class RandomDataset(Dataset): def __init__(self, num_samples): self.num_samples = num_samples def __getitem__(self, idx): image = np.random.random([784]).astype('float32') label = np.random.randint(0, 9, (1, )).astype('int64') return image, label def __len__(self): return self.num_samples dataset = RandomDataset(100) sampler = DistributedBatchSampler(dataset, batch_size=64) for data in sampler: # do something break """ def __init__( self, dataset, batch_size, num_replicas=None, rank=None, shuffle=False, drop_last=False, consumed_samples=0 ): self.dataset = dataset assert isinstance(batch_size, int) and batch_size > 0, "batch_size should be a positive integer" self.batch_size = batch_size assert isinstance(shuffle, bool), "shuffle should be a boolean value" self.shuffle = shuffle assert isinstance(drop_last, bool), "drop_last should be a boolean number" from paddle.distributed import ParallelEnv if num_replicas is not None: assert isinstance(num_replicas, int) and num_replicas > 0, "num_replicas should be a positive integer" self.nranks = num_replicas else: self.nranks = ParallelEnv().nranks if rank is not None: assert isinstance(rank, int) and rank >= 0, "rank should be a non-negative integer" self.local_rank = rank else: self.local_rank = ParallelEnv().local_rank self.drop_last = drop_last self.epoch = 0 self.consumed_samples = consumed_samples if self.dataset is None: # In pre-training mode when using distributed dataloader, the input dataset can be None. We should handle this situation. self.num_samples = 0 else: self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.nranks)) self.total_size = self.num_samples * self.nranks def get_start_end_idx(self): start_idx = self.local_rank * self.batch_size end_idx = start_idx + self.batch_size return start_idx, end_idx def __iter__(self): assert ( self.consumed_samples % self.nranks == 0 ), "The consumed_samples should be divided by nranks. consumed_samples=%d, nranks=%s" % ( self.consumed_samples, self.nranks, ) self.remain_num_samples = int(math.ceil((len(self.dataset) - self.consumed_samples) * 1.0 / self.nranks)) self.remain_total_size = self.remain_num_samples * self.nranks self.batch_size_times_rank_size = self.batch_size * self.nranks batch_indices = [] for idx in range(self.consumed_samples, self.total_size): batch_indices.append(idx) if len(batch_indices) == self.batch_size_times_rank_size: start_idx, end_idx = self.get_start_end_idx() yield batch_indices[start_idx:end_idx] batch_indices = [] if not self.drop_last and len(batch_indices) > 0: yield batch_indices def __len__(self): num_samples = self.num_samples num_samples += int(not self.drop_last) * (self.batch_size - 1) return num_samples // self.batch_size
[docs] def set_epoch(self, epoch=0, consumed_samples=0): """ Sets the epoch number. When :attr:`shuffle=True`, this number is used as seeds of random numbers. By default, users may not set this, all replicas (workers) use a different random ordering for each epoch. If set same number at each epoch, this sampler will yield the same ordering at all epoches. Arguments: epoch (int): Epoch number. Examples: .. code-block:: python from paddle.io import Dataset, DistributedBatchSampler # init with dataset class RandomDataset(Dataset): def __init__(self, num_samples): self.num_samples = num_samples def __getitem__(self, idx): image = np.random.random([784]).astype('float32') label = np.random.randint(0, 9, (1, )).astype('int64') return image, label def __len__(self): return self.num_samples dataset = RandomDataset(100) sampler = DistributedBatchSampler(dataset, batch_size=64) for epoch in range(10): sampler.set_epoch(epoch) """ self.epoch = epoch # if we reset the epoch, the consumed_samples should be set to 0. self.consumed_samples = consumed_samples