modeling#
- class ChineseBertModel(config: ChineseBertConfig)[source]#
Bases:
ChineseBertPretrainedModel
The bare ChineseBert Model transformer outputting raw hidden-states.
This model inherits from
PretrainedModel
. Refer to the superclass documentation for the generic methods.This model is also a Paddle paddle.nn.Layer subclass. Use it as a regular Paddle Layer and refer to the Paddle documentation for all matter related to general usage and behavior.
- Parameters:
config (
ChineseBertConfig
) – An instance of ChineseBertConfig used to construct ChineseBertModel.
- forward(input_ids, pinyin_ids=None, token_type_ids=None, position_ids=None, attention_mask=None, output_hidden_states=False)[source]#
The ChineseBert forward method, overrides the
__call__()
special method.- Parameters:
input_ids (Tensor) – Indices of input sequence tokens in the vocabulary. They are numerical representations of tokens that build the input sequence. Its data type should be
int64
and it has a shape of [batch_size, sequence_length].pinyin_ids (Tensor, optional) – Indices of input sequence tokens pinyin. We apply a CNN model with width 2 on the pinyin sequence, followed by max-pooling to derive the resulting pinyin embedding. This makes output dimensionality immune to the length of the input pinyin sequence. The length of the input pinyin sequence is fixed at 8. Its data type should be
int64
and it has a shape of [batch_size, sequence_length, 8]. Defaults toNone
, which means we don’t add pinyin embeddings.token_type_ids (Tensor, optional) –
Segment token indices to indicate different portions of the inputs. Selected in the range
[0, type_vocab_size - 1]
. Iftype_vocab_size
is 2, which means the inputs have two portions. Indices can either be 0 or 1:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
Its data type should be
int64
and it has a shape of [batch_size, sequence_length]. Defaults toNone
, which means we don’t add segment embeddings.position_ids (Tensor, optional) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, max_position_embeddings - 1]
. Shape as(batch_size, num_tokens)
and dtype as int64. Defaults toNone
.attention_mask (Tensor, optional) – Mask used in multi-head attention to avoid performing attention on to some unwanted positions, usually the paddings or the subsequent positions. Its data type can be int, float and bool. When the data type is bool, the
masked
tokens haveFalse
values and the others haveTrue
values. When the data type is int, themasked
tokens have0
values and the others have1
values. When the data type is float, themasked
tokens have-INF
values and the others have0
values. It is a tensor with shape broadcasted to[batch_size, num_attention_heads, sequence_length, sequence_length]
. Defaults toNone
, which means nothing needed to be prevented attention to.output_hidden_states (bool, optional) – Whether to return the output of each hidden layers. Defaults to
False
.
- Returns:
Returns tuple (
sequence_output
,pooled_output
) or (encoder_outputs
,pooled_output
).With the fields:
sequence_output
(Tensor):Sequence of hidden-states at the last layer of the model. It’s data type should be float32 and its shape is [batch_size, sequence_length, hidden_size].
pooled_output
(Tensor):The output of first token (
[CLS]
) in sequence. We “pool” the model by simply taking the hidden state corresponding to the first token. Its data type should be float32 and its shape is [batch_size, hidden_size].
encoder_outputs
(List(Tensor)):A list of Tensor containing hidden-states of the model at each hidden layer in the Transformer encoder. The length of the list is
num_hidden_layers
. Each Tensor has a data type of float32 and its shape is [batch_size, sequence_length, hidden_size].
- Return type:
tuple
Example
import paddle from paddlenlp.transformers import ChineseBertModel, ChineseBertTokenizer tokenizer = ChineseBertTokenizer.from_pretrained('ChineseBERT-base') model = ChineseBertModel.from_pretrained('ChineseBERT-base') inputs = tokenizer("欢迎使用百度飞桨!") inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} output = model(**inputs)
- get_input_embeddings()[source]#
get input embedding of model
- Returns:
embedding of model
- Return type:
nn.Embedding
- set_input_embeddings(value)[source]#
set new input embedding for model
- Parameters:
value (Embedding) – the new embedding of model
- Raises:
NotImplementedError – Model has not implement
set_input_embeddings
method
- class ChineseBertPretrainedModel(*args, **kwargs)[source]#
Bases:
PretrainedModel
An abstract class for pretrained ChineseBert models. It provides ChineseBert related
model_config_file
,pretrained_init_configuration
,resource_files_names
,pretrained_resource_files_map
,base_model_prefix
for downloading and loading pretrained models. SeePretrainedModel
for more details.- config_class#
alias of
ChineseBertConfig
- base_model_class#
alias of
ChineseBertModel
- class ChineseBertForPretraining(config: ChineseBertConfig)[source]#
Bases:
ChineseBertPretrainedModel
ChineseBert Model with pretraining tasks on top.
- Parameters:
config (
ChineseBertConfig
) – An instance of ChineseBertConfig used to construct ChineseBertForPretraining.e.
- forward(input_ids, pinyin_ids=None, token_type_ids=None, position_ids=None, attention_mask=None, masked_positions=None)[source]#
- Parameters:
input_ids (Tensor) – See
ChineseBertModel
.pinyin_ids (Tensor, optional) – See
ChineseBertModel
.token_type_ids (Tensor, optional) – See
ChineseBertModel
.position_ids (Tensor, optional) – See
ChineseBertModel
.attention_mask (Tensor, optional) – See
ChineseBertModel
.masked_positions (Tensor, optional) – See
ChineseBertPretrainingHeads
.
- Returns:
Returns tuple (
prediction_scores
,seq_relationship_score
).With the fields:
prediction_scores
(Tensor):The scores of masked token prediction. Its data type should be float32. If
masked_positions
is None, its shape is [batch_size, sequence_length, vocab_size]. Otherwise, its shape is [batch_size, mask_token_num, vocab_size].
seq_relationship_score
(Tensor):The scores of next sentence prediction. Its data type should be float32 and its shape is [batch_size, 2].
- Return type:
tuple
- class ChineseBertPretrainingCriterion(vocab_size)[source]#
Bases:
Layer
- Parameters:
vocab_size (int) – Vocabulary size of
inputs_ids
inChineseBertModel
. Defines the number of different tokens that can be represented by theinputs_ids
passed when callingChineseBertBertModel
.
- forward(prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels, masked_lm_scale)[source]#
- Parameters:
prediction_scores (Tensor) – The scores of masked token prediction. Its data type should be float32. If
masked_positions
is None, its shape is [batch_size, sequence_length, vocab_size]. Otherwise, its shape is [batch_size, mask_token_num, vocab_size]seq_relationship_score (Tensor) – The scores of next sentence prediction. Its data type should be float32 and its shape is [batch_size, 2]
masked_lm_labels (Tensor) – The labels of the masked language modeling, its dimensionality is equal to
prediction_scores
. Its data type should be int64. Ifmasked_positions
is None, its shape is [batch_size, sequence_length, 1]. Otherwise, its shape is [batch_size, mask_token_num, 1]next_sentence_labels (Tensor) – The labels of the next sentence prediction task, the dimensionality of
next_sentence_labels
is equal toseq_relation_labels
. Its data type should be int64 and its shape is [batch_size, 1]masked_lm_scale (Tensor or int) – The scale of masked tokens. Used for the normalization of masked language modeling loss. If it is a
Tensor
, its data type should be int64 and its shape is equal toprediction_scores
.
- Returns:
The pretraining loss, equals to the sum of
masked_lm_loss
plus the mean ofnext_sentence_loss
. Its data type should be float32 and its shape is [1].- Return type:
Tensor
- class ChineseBertForSequenceClassification(config: ChineseBertConfig)[source]#
Bases:
ChineseBertPretrainedModel
ChineseBert Model with a linear layer on top of the output layer, designed for sequence classification/regression tasks like GLUE tasks.
- Parameters:
config (
ChineseBertConfig
) – An instance of ChineseBertConfig used to construct ChineseBertForSequenceClassification.e.
- forward(input_ids, pinyin_ids=None, token_type_ids=None, position_ids=None, attention_mask=None)[source]#
The ChineseBertForSequenceClassification forward method, overrides the __call__() special method.
- Parameters:
input_ids (Tensor) – See
ChineseBertModel
.pinyin_ids (Tensor, optional) – See
ChineseBertModel
.token_type_ids (Tensor, optional) – See
ChineseBertModel
.position_ids (Tensor, optional) – See
ChineseBertModel
.attention_mask (list, optional) – See
ChineseBertModel
.
- Returns:
Returns tensor
logits
, a tensor of the input text classification logits. Shape as[batch_size, num_classes]
and dtype as float32.- Return type:
Tensor
Example
import paddle from paddlenlp.transformers.chinesebert.modeling import ChineseBertForSequenceClassification from paddlenlp.transformers.chinesebert.tokenizer import ChineseBertTokenizer tokenizer = ChineseBertTokenizer.from_pretrained('ChineseBERT-base') model = ChineseBertForSequenceClassification.from_pretrained('ChineseBERT-base', num_classes=2) inputs = tokenizer("欢迎使用百度飞桨!") inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} logits = model(**inputs) print(logits.shape) # [1, 2]
- class ChineseBertForTokenClassification(config: ChineseBertConfig)[source]#
Bases:
ChineseBertPretrainedModel
ChineseBert Model with a linear layer on top of the hidden-states output layer, designed for token classification tasks like NER tasks.
- Parameters:
config (
ChineseBertConfig
) – An instance of ChineseBertConfig used to construct ChineseBertForTokenClassification.e.
- forward(input_ids, pinyin_ids=None, token_type_ids=None, position_ids=None, attention_mask=None)[source]#
The ChineseBertForTokenClassification forward method, overrides the __call__() special method.
- Parameters:
input_ids (Tensor) – See
ChineseBertModel
.pinyin_ids (Tensor, optional) – See
ChineseBertModel
.token_type_ids (Tensor, optional) – See
ChineseBertModel
.position_ids (Tensor, optional) – See
ChineseBertModel
.attention_mask (list, optional) – See
ChineseBertModel
.
- Returns:
Returns tensor
logits
, a tensor of the input token classification logits. Shape as[batch_size, sequence_length, num_classes]
and dtype asfloat32
.- Return type:
Tensor
Example
import paddle from paddlenlp.transformers.chinesebert.modeling import ChineseBertForSequenceClassification from paddlenlp.transformers.chinesebert.tokenizer import ChineseBertTokenizer tokenizer = ChineseBertTokenizer.from_pretrained('ChineseBERT-base') model = ChineseBertForSequenceClassification.from_pretrained('ChineseBERT-base', num_classes=2) inputs = tokenizer("欢迎使用百度飞桨!") inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} logits = model(**inputs) print(logits.shape) # [1, 13, 2]
- class ChineseBertForQuestionAnswering(config: ChineseBertConfig)[source]#
Bases:
ChineseBertPretrainedModel
ChineseBert Model with a linear layer on top of the hidden-states output to compute
span_start_logits
andspan_end_logits
, designed for question-answering tasks like SQuAD.- Parameters:
config (
ChineseBertConfig
) – An instance of ChineseBertConfig used to construct ChineseBertForQuestionAnswering.
- forward(input_ids, pinyin_ids=None, token_type_ids=None, attention_mask=None)[source]#
The ChineseBertForQuestionAnswering forward method, overrides the __call__() special method.
- Parameters:
input_ids (Tensor) – See
ChineseBertModel
.pinyin_ids (Tensor, optional) – See
ChineseBertModel
.token_type_ids (Tensor, optional) – See
ChineseBertModel
.attention_mask (Tensor, optional) – See
ChineseBertModel
.
- Returns:
Returns tuple (
start_logits
,end_logits
).With the fields:
start_logits
(Tensor):A tensor of the input token classification logits, indicates the start position of the labelled span. Its data type should be float32 and its shape is [batch_size, sequence_length].
end_logits
(Tensor):A tensor of the input token classification logits, indicates the end position of the labelled span. Its data type should be float32 and its shape is [batch_size, sequence_length].
- Return type:
tuple
Example
import paddle from paddlenlp.transformers.chinesebert.modeling import ChineseBertForQuestionAnswering from paddlenlp.transformers.chinesebert.tokenizer import ChineseBertTokenizer tokenizer = ChineseBertTokenizer.from_pretrained('ChineseBERT-base') model = ChineseBertForQuestionAnswering.from_pretrained('ChineseBERT-base') inputs = tokenizer("欢迎使用百度飞桨!") inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} outputs = model(**inputs) start_logits = outputs[0] end_logits = outputs[1]