Torch2Paddle Weight Conversion Tutorial

Torch2Paddle Weight Conversion Tutorial#

Convert PyTorch Weights#

PaddleNLP provides an interface to automatically convert PyTorch weights to Paddle weights. The code is as follows:

from paddlenlp.transformers import AutoModelForCausalLM

AutoModelForCausalLM.from_pretrained("/path/to/pytorch/model", convert_from_torch=True, dtype="float16")

The dtype parameter specifies the actual data type of converted weights, typically: float16, bfloat16 and float32.

The above code will automatically load PyTorch weights and convert them into corresponding Paddle weights, saved in the /path/to/pytorch/model directory.

Merge Sharded PyTorch Weights#

Currently, PaddleNLP only supports converting single PyTorch weight files: pytorch_model.bin. When PyTorch weights are sharded, they need to be merged first. The merging script is shown below:

import torch, os
state_dict = {}

files = [file for file in os.list("./path/to/pytorch/weight") if file.startswith("pytorch_model-")]

for file in files:
    state_dict.update(torch.load(file))

torch.save(state_dict, "pytorch_model.bin")

Supported Models List#

The following table shows the list of supported models for automatic weight conversion:

Model Supported
AlBert
Bart
Bert
Bloom
Clip
DistilBert
Electra
ErnieCode
GLM
Gpt
Llama
Mt5
Opt
Qwen
Roberta
Roformer
RW
T5