Source code for paddlenlp.transformers.gpt.modeling

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations

import collections
import contextlib
import math
from functools import partial

import numpy as np
import paddle
import paddle.incubate as incubate
import paddle.nn as nn
import paddle.nn.functional as F
import paddle.tensor as tensor
from paddle.distributed import fleet
from paddle.distributed.fleet.meta_parallel import get_rng_state_tracker
from paddle.distributed.fleet.utils import recompute
from paddle.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from ...utils.converter import StateDictNameMapping
from ...utils.log import logger
from .. import PretrainedModel, register_base_model
from ..model_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
    SequenceClassifierOutputWithPast,
    TokenClassifierOutput,
)
from ..model_utils import dy2st_nocheck_guard_context
from ..sequence_parallel_utils import (
    ColumnSequenceParallelLinear,
    GatherOp,
    RowSequenceParallelLinear,
    ScatterOp,
    mark_as_sequence_parallel_parameter,
)
from .configuration import GPT_PRETRAINED_INIT_CONFIGURATION, GPTConfig

try:
    from paddle.nn.functional.flash_attention import flash_attention
except:
    flash_attention = None
try:
    from paddle.incubate.nn.layer.fused_dropout_add import FusedDropoutAdd
except:
    FusedDropoutAdd = None

__all__ = [
    "GPTModel",
    "GPTPretrainedModel",
    "GPTPretrainingCriterion",
    "GPTForGreedyGeneration",
    "GPTLMHeadModel",
    "GPTForTokenClassification",
    "GPTForSequenceClassification",
    "GPTForCausalLM",
    "GPTEmbeddings",
    "GPTDecoderLayer",
]


def get_triangle_upper_mask(x, mask=None):
    if mask is not None:
        return mask
    if paddle.is_compiled_with_xpu():
        # xpu does not support set constant to -np.inf
        mask = paddle.full_like(x, -1e4)
    else:
        mask = paddle.full_like(x, -np.inf)
    mask.stop_gradient = True
    mask = paddle.triu(mask, diagonal=1)
    mask.stop_gradient = True
    return mask


def parallel_matmul(x: paddle.Tensor, y: paddle.Tensor, transpose_y=True, tensor_parallel_output=True):
    is_fleet_init = True
    tensor_parallel_degree = 1
    try:
        hcg = fleet.get_hybrid_communicate_group()
        model_parallel_group = hcg.get_model_parallel_group()
        tensor_parallel_degree = hcg.get_model_parallel_world_size()
    except:
        is_fleet_init = False

    if is_fleet_init and tensor_parallel_degree > 1 and y.is_distributed:
        # if not running under distributed.launch, it will raise AttributeError: 'Fleet' object has no attribute '_hcg'
        input_parallel = paddle.distributed.collective._c_identity(x, group=model_parallel_group)
        logits = paddle.matmul(input_parallel, y, transpose_y=transpose_y)

        if tensor_parallel_output:
            return logits

        return paddle.distributed.collective._c_concat(logits, group=model_parallel_group)

    else:
        logits = paddle.matmul(x, y, transpose_y=transpose_y)
        return logits


def seed_guard_context(name=None):
    if name in get_rng_state_tracker().states_:
        return get_rng_state_tracker().rng_state(name)
    else:
        return contextlib.nullcontext()


def _make_causal_mask(input_ids_shape, past_key_values_length):
    """
    Make causal mask used for self-attention
    """
    batch_size, target_length = input_ids_shape  # target_length: seq_len

    mask = paddle.tril(paddle.ones((target_length, target_length), dtype="bool"))

    if past_key_values_length > 0:
        # [tgt_len, tgt_len + past_len]
        mask = paddle.concat([paddle.ones([target_length, past_key_values_length], dtype="bool"), mask], axis=-1)

    # [bs, 1, tgt_len, tgt_len + past_len]
    return mask[None, None, :, :].expand([batch_size, 1, target_length, target_length + past_key_values_length])


def _expand_2d_mask(mask, dtype, tgt_length):
    """
    Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
    """
    batch_size, src_length = mask.shape[0], mask.shape[-1]
    tgt_length = tgt_length if tgt_length is not None else src_length

    mask = mask[:, None, None, :].astype("bool")
    mask.stop_gradient = True
    expanded_mask = mask.expand([batch_size, 1, tgt_length, src_length])

    return expanded_mask


class MultiHeadAttention(nn.Layer):
    """
    Attention mapps queries and a set of key-value pairs to outputs, and
    Multi-Head Attention performs multiple parallel attention to jointly attending
    to information from different representation subspaces.

    """

    Cache = collections.namedtuple("Cache", ["k", "v"])

    def __init__(
        self,
        config,
    ):
        super(MultiHeadAttention, self).__init__()

        self.config = config

        # Recompute defaults to False and is controlled by Trainer
        self.enable_recompute = False

        self.use_flash_attention = config.use_flash_attention if flash_attention else False

        self.head_dim = config.hidden_size // config.num_attention_heads
        assert (
            self.head_dim * config.num_attention_heads == config.hidden_size
        ), "hidden_size must be divisible by num_attention_heads"

        self.num_attention_heads = config.num_attention_heads  # default, without tensor parallel

        if config.sequence_parallel:
            ColumnParallelLinear = ColumnSequenceParallelLinear
            RowParallelLinear = RowSequenceParallelLinear
        else:
            ColumnParallelLinear = fleet.meta_parallel.ColumnParallelLinear
            RowParallelLinear = fleet.meta_parallel.RowParallelLinear

        if config.tensor_parallel_degree > 1:
            assert config.num_attention_heads % config.tensor_parallel_degree == 0
            self.num_attention_heads = config.num_attention_heads // config.tensor_parallel_degree

            if config.fuse_attention_qkv:
                self.qkv_proj = ColumnParallelLinear(
                    config.hidden_size,
                    3 * config.hidden_size,
                    has_bias=True,
                    gather_output=False,
                    fuse_matmul_bias=config.fused_linear,
                )
            else:
                self.q_proj = ColumnParallelLinear(
                    config.hidden_size,
                    config.hidden_size,
                    has_bias=True,
                    gather_output=False,
                    fuse_matmul_bias=config.fused_linear,
                )

                self.k_proj = ColumnParallelLinear(
                    config.hidden_size,
                    config.hidden_size,
                    has_bias=True,
                    gather_output=False,
                    fuse_matmul_bias=config.fused_linear,
                )

                self.v_proj = ColumnParallelLinear(
                    config.hidden_size,
                    config.hidden_size,
                    has_bias=True,
                    gather_output=False,
                    fuse_matmul_bias=config.fused_linear,
                )

            self.out_proj = RowParallelLinear(
                config.hidden_size,
                config.hidden_size,
                has_bias=True,
                input_is_parallel=True,
                fuse_matmul_bias=config.fused_linear,
            )
        else:
            if self.config.fuse_attention_qkv:
                self.qkv_proj = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias_attr=True)
            else:
                self.q_proj = nn.Linear(config.hidden_size, config.hidden_size, bias_attr=True)
                self.k_proj = nn.Linear(config.hidden_size, config.hidden_size, bias_attr=True)
                self.v_proj = nn.Linear(config.hidden_size, config.hidden_size, bias_attr=True)

            self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias_attr=True)

    def _fuse_prepare_qkv(self, query, use_cache=False, past_key_value=None):
        if self.config.sequence_parallel:
            # [bs, seq_len, num_head * head_dim] -> [bs / n, seq_len, num_head, head_dim] (n is model parallelism)
            target_shape = [-1, self.config.seq_length, self.num_attention_heads, 3 * self.head_dim]
        else:
            target_shape = [0, 0, self.num_attention_heads, 3 * self.head_dim]

        # bs, seq_len, num_head * 3*head_dim
        mix_layer = self.qkv_proj(query)
        # bs, seq_len, num_head, 3*head_dim
        mix_layer = paddle.reshape_(mix_layer, target_shape)
        # query_states, key_states, value_states => bs, seq_len, num_head, head_dim
        query_states, key_states, value_states = paddle.split(mix_layer, num_or_sections=3, axis=-1)

        # [bs, seq_len, num_head, head_dim]
        if past_key_value is not None:
            # reuse k, v, self_attention
            # concat along seqlen dimension
            key_states = paddle.concat([past_key_value[0], key_states], axis=1)
            value_states = paddle.concat([past_key_value[1], value_states], axis=1)

        past_key_value = (key_states, value_states) if use_cache else None

        return query_states, key_states, value_states, past_key_value

    def _prepare_qkv(self, query, key, value, use_cache=False, past_key_value=None):
        r"""
        Prapares linear projected queries, keys and values for usage of subsequnt
        multiple parallel attention. If `cache` is not None, using cached results
        to reduce redundant calculations.

        """
        if self.config.sequence_parallel:
            # [bs, seq_len, num_head * head_dim] -> [bs/n, seq_len, num_head * head_dim] (n is model parallelism)
            target_shape = [-1, self.config.seq_length, self.num_attention_heads, self.head_dim]
        else:
            target_shape = [0, 0, self.num_attention_heads, self.head_dim]

        query_states = self.q_proj(query)
        # [bs, seq_len, num_head, head_dim]
        query_states = tensor.reshape(x=query_states, shape=target_shape)

        key_states = self.k_proj(key)
        # [bs, seq_len, num_head, head_dim]
        key_states = tensor.reshape(x=key_states, shape=target_shape)

        value_states = self.v_proj(value)
        # [bs, seq_len, num_head, head_dim]
        value_states = tensor.reshape(x=value_states, shape=target_shape)

        # [bs, seq_len, num_head, head_dim]
        if past_key_value is not None:
            # reuse k, v, self_attention
            # concat along seqlen dimension
            key_states = paddle.concat([past_key_value[0], key_states], axis=1)
            value_states = paddle.concat([past_key_value[1], value_states], axis=1)

        past_key_value = (key_states, value_states) if use_cache else None

        return query_states, key_states, value_states, past_key_value

    def _flash_attention(self, q, k, v, attention_mask=None, output_attentions=False):
        with seed_guard_context("local_seed"):
            out, weights = flash_attention(
                query=q,
                key=k,
                value=v,
                dropout=self.config.attention_probs_dropout_prob,
                causal=q.shape[1] != 1,
                return_softmax=output_attentions,
                training=self.training,
            )
        # [bs, seq_len, num_head, head_dim] -> [bs, seq_len, num_head * head_dim]
        out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])
        return (out, weights) if output_attentions else out

    def _core_attention(self, q, k, v, attention_mask=None, output_attentions=False):
        # [bs, seq_len, num_head, head_dim] -> [bs, num_head, seq_len, head_dim]
        perm = [0, 2, 1, 3]
        q = tensor.transpose(x=q, perm=perm)
        k = tensor.transpose(x=k, perm=perm)
        v = tensor.transpose(x=v, perm=perm)
        # scale dot product attention
        product = paddle.matmul(x=q * ((self.config.scale_qk_coeff * self.head_dim) ** -0.5), y=k, transpose_y=True)
        if self.config.scale_qk_coeff != 1.0:
            product = product.scale(self.config.scale_qk_coeff)

        # softmax_mask_fuse_upper_triangle is not supported sif paddle is not compiled with cuda/rocm
        if not paddle.is_compiled_with_cuda():
            attention_mask = get_triangle_upper_mask(product, attention_mask)

        if attention_mask is not None:
            product = product + attention_mask.astype(product.dtype)
            weights = F.softmax(product)
        else:
            weights = incubate.softmax_mask_fuse_upper_triangle(product)

        if self.config.attention_probs_dropout_prob:
            with seed_guard_context("local_seed"):
                weights = F.dropout(
                    weights, self.config.attention_probs_dropout_prob, training=self.training, mode="upscale_in_train"
                )

        out = paddle.matmul(weights, v)

        # combine heads
        out = tensor.transpose(out, perm=[0, 2, 1, 3])  # bs, seq_len, num_head, head_dim
        out = tensor.reshape(x=out, shape=[0, 0, -1])  # bs, seq_len, dim

        return (out, weights) if output_attentions else out

    def forward(
        self, query, key, value, attention_mask=None, use_cache=False, past_key_value=None, output_attentions=False
    ):
        r"""
        Applies multi-head attention to map queries and a set of key-value pairs
        to outputs.
        """
        key = query if key is None else key
        value = query if value is None else value
        if self.config.fuse_attention_qkv:
            # [bs, seq_len, num_head, head_dim]
            q, k, v, past_key_value = self._fuse_prepare_qkv(query, use_cache, past_key_value)
        else:
            # [bs, seq_len, num_head, head_dim]
            q, k, v, past_key_value = self._prepare_qkv(query, key, value, use_cache, past_key_value)

        if self.config.use_flash_attention:
            # Flash Attention now ignore attention mask
            # Current Flash Attention doesn't support attn maskt
            # Paddle Flash Attention input [batch_size, seq_len, num_heads, head_dim]
            # Torch Flash Attention input (batch_size, seqlen, nheads, headdim)
            # bsz, q_len, num_heads, head_dim = q.shape
            # TODO: Support attention mask for flash attention
            attention_func = self._flash_attention
        else:
            # scale dot product attention
            # [bs, seq_len, num_head,]
            attention_func = self._core_attention

        has_gradient = (not q.stop_gradient) or (not k.stop_gradient) or (not v.stop_gradient)
        if self.enable_recompute and self.config.recompute_granularity == "core_attn" and has_gradient:
            outputs = recompute(attention_func, q, k, v, attention_mask, output_attentions, use_reentrant=False)
        else:
            outputs = attention_func(q, k, v, attention_mask=attention_mask, output_attentions=output_attentions)

        if output_attentions:
            out, weights = outputs
        else:
            out = outputs

        # if sequence_parallel is true, out shape are [bs, seq_len, num_head * head_dim / n]
        # else their shape are [bs, q_len, num_head * head_dim / n], n is mp parallelism.

        if self.config.sequence_parallel:
            bs, seq_len, dim = out.shape
            out = out.reshape([bs * seq_len, dim])  # [bs, seq_len, dim / n] => [bs * seq_len, dim / n]

        # project to output
        out = self.out_proj(out)
        # if sequence_parallel is true, out shape are [bs * seq_len / n, dim]
        # else their shape are [bs, seq_len, dim], n is mp parallelism.

        outs = [out]
        if output_attentions:
            outs.append(weights)
        if use_cache:
            outs.append(past_key_value)
        return out if len(outs) == 1 else tuple(outs)


class TransformerDecoder(nn.Layer):
    """
    TransformerDecoder is a stack of N decoder layers.
    """

    def __init__(self, config, decoder_layers, norm=None, hidden_size=None):
        super(TransformerDecoder, self).__init__()

        self.config = config
        self.layers = decoder_layers
        self.norm = nn.LayerNorm(config.hidden_size, epsilon=1e-5)

        if config.sequence_parallel:
            mark_as_sequence_parallel_parameter(self.norm.weight)
            mark_as_sequence_parallel_parameter(self.norm.bias)

        # Note that we will actually perform a recompute only if both enable_recompute and layerwise_recompute are set to True
        # Enable_recompute defaults to False and is controlled by Trainer
        self.enable_recompute = False

    @paddle.jit.not_to_static
    def recompute_training(
        self,
        layer_module: nn.Layer,
        hidden_states: paddle.Tensor,
        past_key_value: paddle.Tensor,
        attention_mask: paddle.Tensor,
        use_cache: bool,
        output_attentions: paddle.Tensor,
    ):
        def create_custom_forward(module):
            def custom_forward(*inputs):
                return module(*inputs, output_attentions)

            return custom_forward

        # GPTDecoderLayer
        # def forward(
        #     self, hidden_states, attention_mask=None, use_cache=False, past_key_value=None, output_attentions=False
        # ):
        hidden_states = recompute(
            create_custom_forward(layer_module),
            hidden_states,
            attention_mask,
            use_cache,
            past_key_value,
            use_reentrant=self.config.recompute_use_reentrant,
        )
        return hidden_states

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        use_cache=False,
        past_key_values=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=False,
    ):
        r"""
        Applies a stack of N Transformer decoder layers on inputs. If `norm` is
        provided, also applies layer normalization on the output of last decoder
        layer.
        """

        # [bs * seq_len, embed_dim] -> [seq_len * bs / n, embed_dim] (sequence_parallel)

        output = hidden_states
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        next_decoder_cache = () if use_cache else None

        for i, mod in enumerate(self.layers):
            has_gradient = not output.stop_gradient
            # def forward(self, hidden_states, attention_mask=None, use_cache=False, past_key_value=None, output_attentions=False):
            if self.enable_recompute and has_gradient and self.config.recompute_granularity == "full_attn":
                outputs = self.recompute_training(
                    layer_module=mod,
                    hidden_states=output,
                    attention_mask=attention_mask,
                    use_cache=use_cache,
                    past_key_value=None,
                    output_attentions=output_attentions,
                )
            else:
                outputs = mod(
                    output,
                    attention_mask=attention_mask,
                    use_cache=use_cache,
                    past_key_value=past_key_values[i] if past_key_values is not None else None,
                    output_attentions=output_attentions,
                )

            # outputs = hidden_states if both use_cache and output_attentions are False
            # Otherwise, outputs = (hidden_states, attention if output_attentions, cache if use_cache)
            output = outputs[0] if (use_cache or output_attentions) else outputs
            all_self_attentions = all_self_attentions + (outputs[1],) if output_attentions else None
            all_hidden_states = all_hidden_states + (output,) if output_hidden_states else None
            next_decoder_cache = next_decoder_cache + (outputs[-1],) if use_cache else None

        if self.norm is not None:
            output = self.norm(output)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            temp_list = [output, next_cache, all_hidden_states, all_self_attentions]

            if not (use_cache or output_attentions or output_hidden_states):
                return output

            return tuple(v for v in temp_list if v is not None)

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=output,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=None,
        )


[docs]class GPTDecoderLayer(nn.Layer): """ The transformer decoder layer. It contains multiheadattention and some linear layers. """ def __init__(self, config: GPTConfig): super(GPTDecoderLayer, self).__init__() self.config = config # Recompute defaults to False and is controlled by Trainer self.enable_recompute = False if not FusedDropoutAdd: config.use_fused_dropout_add = False self.self_attn = MultiHeadAttention(config=config) if config.sequence_parallel: ColumnParallelLinear = ColumnSequenceParallelLinear RowParallelLinear = RowSequenceParallelLinear else: ColumnParallelLinear = fleet.meta_parallel.ColumnParallelLinear RowParallelLinear = fleet.meta_parallel.RowParallelLinear # TODO:config.fuse_attention_ffn @DrownFish19 if config.tensor_parallel_degree > 1: self.linear1 = ColumnParallelLinear( config.hidden_size, config.intermediate_size, gather_output=False, has_bias=True, fuse_matmul_bias=self.config.fused_linear, ) self.linear2 = RowParallelLinear( config.intermediate_size, config.hidden_size, input_is_parallel=True, has_bias=True, fuse_matmul_bias=self.config.fused_linear, ) else: self.linear1 = nn.Linear(config.hidden_size, config.intermediate_size, bias_attr=True) self.linear2 = nn.Linear(config.intermediate_size, config.hidden_size, bias_attr=True) self.norm1 = nn.LayerNorm(config.hidden_size, epsilon=1e-5) self.norm2 = nn.LayerNorm(config.hidden_size, epsilon=1e-5) if config.sequence_parallel: mark_as_sequence_parallel_parameter(self.norm1.weight) mark_as_sequence_parallel_parameter(self.norm1.bias) mark_as_sequence_parallel_parameter(self.norm2.weight) mark_as_sequence_parallel_parameter(self.norm2.bias) if config.use_fused_dropout_add: self.fused_dropout_add1 = FusedDropoutAdd(config.attention_probs_dropout_prob, mode="upscale_in_train") self.fused_dropout_add2 = FusedDropoutAdd(config.hidden_dropout_prob, mode="upscale_in_train") else: self.dropout1 = nn.Dropout(config.attention_probs_dropout_prob, mode="upscale_in_train") self.dropout2 = nn.Dropout(config.hidden_dropout_prob, mode="upscale_in_train") if config.hidden_activation == "gelu": self.activation = F.gelu else: self.activation = getattr(F, config.hidden_activation)
[docs] def forward( self, hidden_states, attention_mask=None, use_cache=False, past_key_value=None, output_attentions=False ): # when sequence_parallel=True: # hidden_states => [bs * seq_len / n, embed_dim] residual = hidden_states if self.config.normalize_before: hidden_states = self.norm1(hidden_states) # self.self_attn: # def forward( # self, query, key, value, attention_mask=None, use_cache=False, past_key_value=None, output_attentions=False # ): # self.self_attn(...) --> hidden_states, weights, (past_key_value) has_gradient = not hidden_states.stop_gradient if self.enable_recompute and has_gradient and self.config.recompute_granularity == "full_attn": hidden_states = recompute( self.self_attn, hidden_states, None, None, attention_mask, use_cache, past_key_value, output_attentions, use_reentrant=False, ) else: hidden_states = self.self_attn( hidden_states, None, None, attention_mask, use_cache, past_key_value, output_attentions ) # when sequence_parallel=True: # hidden_states => [bs * seq_len / n, embed_dim] incremental_cache = hidden_states[-1] if use_cache else None attention_weights = hidden_states[1] if output_attentions else None hidden_states = hidden_states[0] if (use_cache or output_attentions) else hidden_states # Use a ternary operator for a more concise assignment of current_seed current_seed = "local_seed" if self.config.sequence_parallel else "global_seed" # The 'with' block ensures the correct seed context is used with seed_guard_context(current_seed): if self.config.use_fused_dropout_add: hidden_states = self.fused_dropout_add1(hidden_states, residual) else: hidden_states = residual + self.dropout1(hidden_states) if not self.config.normalize_before: hidden_states = self.norm1(hidden_states) residual = hidden_states if self.config.normalize_before: hidden_states = self.norm2(hidden_states) # when sequence_parallel=True: # hidden_states => [bs * seq_len / n, embed_dim] with seed_guard_context(current_seed): if not self.config.use_fused_dropout_add: hidden_states = residual + self.dropout2( self.linear2(self.activation(self.linear1(hidden_states), approximate=True)) ) else: hidden_states = self.fused_dropout_add2( self.linear2(self.activation(self.linear1(hidden_states), approximate=True)), residual ) if not self.config.normalize_before: hidden_states = self.norm2(hidden_states) if not (output_attentions or use_cache): return hidden_states temp_list = [ hidden_states, attention_weights, incremental_cache, ] return tuple(v for v in temp_list if v is not None)
[docs]class GPTEmbeddings(nn.Layer): """ Include embeddings from word and position embeddings. """ def __init__( self, config, ): super(GPTEmbeddings, self).__init__() self.config = config if config.tensor_parallel_degree > 1: self.word_embeddings = fleet.meta_parallel.VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) else: self.word_embeddings = nn.Embedding( config.vocab_size, config.hidden_size, ) self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, ) self.dropout = nn.Dropout(config.hidden_dropout_prob)
[docs] def forward(self, input_ids, position_ids=None, inputs_embeddings=None): if input_ids is not None: input_shape = paddle.shape(input_ids) inputs_embeddings = self.word_embeddings(input_ids) else: input_shape = paddle.shape(inputs_embeddings)[:-1] if position_ids is None: ones = paddle.ones(input_shape, dtype="int64") seq_length = paddle.cumsum(ones, axis=-1) position_ids = seq_length - ones position_embeddings = self.position_embeddings(position_ids) embeddings = inputs_embeddings + position_embeddings if self.config.sequence_parallel: bs, seq_len, hidden_size = embeddings.shape # [bs, seq_len, dim] -> [bs * seq_len, dim] embeddings = paddle.reshape_(embeddings, [bs * seq_len, hidden_size]) # [bs * seq_len / n, dim] (n is mp parallelism) embeddings = ScatterOp.apply(embeddings) # Use a ternary operator for a more concise assignment of current_seed current_seed = "local_seed" if self.config.sequence_parallel else "global_seed" # The 'with' block ensures the correct seed context is used with seed_guard_context(current_seed): embeddings = self.dropout(embeddings) return embeddings
[docs]class GPTPretrainedModel(PretrainedModel): """ An abstract class for pretrained GPT models. It provides GPT related `model_config_file`, `resource_files_names`, `pretrained_resource_files_map`, `pretrained_init_configuration`, `base_model_prefix` for downloading and loading pretrained models. See :class:`~paddlenlp.transformers.model_utils.PretrainedModel` for more details. """ model_config_file = "model_config.json" resource_files_names = {"model_state": "model_state.pdparams"} base_model_prefix = "gpt" config_class = GPTConfig pretrained_init_configuration = GPT_PRETRAINED_INIT_CONFIGURATION @classmethod def _get_tensor_parallel_mappings(cls, config, is_split=True): from paddlenlp.transformers.conversion_utils import split_or_merge_func fn = split_or_merge_func( is_split=is_split, tensor_parallel_degree=config.tensor_parallel_degree, tensor_parallel_rank=config.tensor_parallel_rank, num_attention_heads=config.num_attention_heads, ) def get_tensor_parallel_split_mappings(num_layers): final_actions = {} base_actions = { # Column Linear "layers.0.linear1.weight": partial(fn, is_column=True), "layers.0.linear1.bias": partial(fn, is_column=True), # Row Linear "word_embeddings.weight": partial(fn, is_column=False), "layers.0.self_attn.out_proj.weight": partial(fn, is_column=False), "layers.0.linear2.weight": partial(fn, is_column=False), } if config.fuse_attention_qkv: base_actions["layers.0.self_attn.qkv_proj.weight"] = partial(fn, is_column=True) base_actions["layers.0.self_attn.qkv_proj.bias"] = partial(fn, is_column=True) else: base_actions["layers.0.self_attn.q_proj.weight"] = partial(fn, is_column=True) base_actions["layers.0.self_attn.k_proj.weight"] = partial(fn, is_column=True) base_actions["layers.0.self_attn.v_proj.weight"] = partial(fn, is_column=True) base_actions["layers.0.self_attn.q_proj.bias"] = partial(fn, is_column=True) base_actions["layers.0.self_attn.k_proj.bias"] = partial(fn, is_column=True) base_actions["layers.0.self_attn.v_proj.bias"] = partial(fn, is_column=True) for key, action in base_actions.items(): if "layers.0." in key: for i in range(num_layers): final_actions[key.replace("layers.0.", f"layers.{i}.")] = action final_actions[key] = action return final_actions mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers) return mappings @classmethod def _get_name_mappings(cls, config: GPTConfig) -> list[StateDictNameMapping]: mappings: list[StateDictNameMapping] = [] model_mappings = [ ["wte.weight", "embeddings.word_embeddings.weight"], ["wpe.weight", "embeddings.position_embeddings.weight"], ["ln_f.weight", "decoder.norm.weight"], ["ln_f.bias", "decoder.norm.bias"], ] for layer_index in range(config.num_hidden_layers): layer_mappings = [ [f"h.{layer_index}.ln_1.weight", f"decoder.layers.{layer_index}.norm1.weight"], [f"h.{layer_index}.ln_1.bias", f"decoder.layers.{layer_index}.norm1.bias"], [f"h.{layer_index}.ln_2.weight", f"decoder.layers.{layer_index}.norm2.weight"], [f"h.{layer_index}.ln_2.bias", f"decoder.layers.{layer_index}.norm2.bias"], [f"h.{layer_index}.mlp.c_fc.weight", f"decoder.layers.{layer_index}.linear1.weight"], [f"h.{layer_index}.mlp.c_fc.bias", f"decoder.layers.{layer_index}.linear1.bias"], [f"h.{layer_index}.mlp.c_proj.weight", f"decoder.layers.{layer_index}.linear2.weight"], [f"h.{layer_index}.mlp.c_proj.bias", f"decoder.layers.{layer_index}.linear2.bias"], [f"h.{layer_index}.attn.c_proj.weight", f"decoder.layers.{layer_index}.self_attn.out_proj.weight"], [f"h.{layer_index}.attn.c_proj.bias", f"decoder.layers.{layer_index}.self_attn.out_proj.bias"], # attention [ f"h.{layer_index}.attn.c_attn.weight", f"decoder.layers.{layer_index}.self_attn.q_proj.weight", "split", 0, ], [ f"h.{layer_index}.attn.c_attn.bias", f"decoder.layers.{layer_index}.self_attn.q_proj.bias", "split", 0, ], [ f"h.{layer_index}.attn.c_attn.weight", f"decoder.layers.{layer_index}.self_attn.k_proj.weight", "split", 1, ], [ f"h.{layer_index}.attn.c_attn.bias", f"decoder.layers.{layer_index}.self_attn.k_proj.bias", "split", 1, ], [ f"h.{layer_index}.attn.c_attn.weight", f"decoder.layers.{layer_index}.self_attn.v_proj.weight", "split", 2, ], [ f"h.{layer_index}.attn.c_attn.bias", f"decoder.layers.{layer_index}.self_attn.v_proj.bias", "split", 2, ], ] model_mappings.extend(layer_mappings) # downstream mappings if "GPT2Model" not in config.architectures: for mapping in model_mappings: mapping[0] = "transformer." + mapping[0] mapping[1] = "gpt." + mapping[1] if "GPT2ForTokenClassification" in config.architectures: model_mappings.extend([["classifier.weight", "classifier.weight", "transpose"]]) if "GPT2ForSequenceClassification" in config.architectures: model_mappings.extend([["score.weight", "score.weight", "transpose"]]) if "GPT2LMHeadModel" in config.architectures: model_mappings.append(["lm_head.weight", "lm_head.decoder.weight"]) mappings = [StateDictNameMapping(*mapping) for mapping in model_mappings] return mappings def _init_weights(self, layer): """Initialization hook""" if self.config.tensor_parallel_degree > 1: rng_tracker = get_rng_state_tracker().rng_state if isinstance( layer, ( nn.Linear, nn.Embedding, fleet.meta_parallel.VocabParallelEmbedding, fleet.meta_parallel.ColumnParallelLinear, fleet.meta_parallel.RowParallelLinear, ColumnSequenceParallelLinear, RowSequenceParallelLinear, ), ): # In the dygraph mode, use the `set_value` to reset the parameter directly, # and reset the `state_dict` to update parameter in static mode. if isinstance(layer.weight, paddle.Tensor): if layer.weight.is_distributed: with rng_tracker(): layer.weight.set_value( paddle.tensor.normal( mean=0.0, std=self.config.initializer_range, shape=layer.weight.shape, ) ) else: layer.weight.set_value( paddle.tensor.normal( mean=0.0, std=self.config.initializer_range, shape=layer.weight.shape, ) ) # Layer.apply is DFS https://github.com/PaddlePaddle/Paddle/blob/a6f5021fcc58b21f4414bae6bf4731ef6971582c/python/paddle/nn/layer/layers.py#L527-L530 # sublayer is init first # scale RowParallelLinear weight with paddle.no_grad(): if isinstance(layer, GPTDecoderLayer): factor = 1 / math.sqrt(2 * self.config.num_hidden_layers) layer.linear2.weight.scale_(factor) if isinstance(layer, MultiHeadAttention): factor = 1 / math.sqrt(2 * self.config.num_hidden_layers) layer.out_proj.weight.scale_(factor)
[docs]@register_base_model class GPTModel(GPTPretrainedModel): r""" The bare GPT Model transformer outputting raw hidden-states. This model inherits from :class:`~paddlenlp.transformers.model_utils.PretrainedModel`. Refer to the superclass documentation for the generic methods. This model is also a Paddle `paddle.nn.Layer <https://www.paddlepaddle.org.cn/documentation /docs/zh/api/paddle/nn/Layer_cn.html>`__ subclass. Use it as a regular Paddle Layer and refer to the Paddle documentation for all matter related to general usage and behavior. Args: vocab_size (int): Vocabulary size of `inputs_ids` in `GPTModel`. Also is the vocab size of token embedding matrix. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling `GPTModel`. hidden_size (int, optional): Dimensionality of the embedding layer and decoder layer. Defaults to `768`. num_hidden_layers (int, optional): Number of hidden layers in the Transformer decoder. Defaults to `12`. num_attention_heads (int, optional): Number of attention heads for each attention layer in the Transformer decoder. Defaults to `12`. intermediate_size (int, optional): Dimensionality of the feed-forward (ff) layer in the decoder. Input tensors to ff layers are firstly projected from `hidden_size` to `intermediate_size`, and then projected back to `hidden_size`. Typically `intermediate_size` is larger than `hidden_size`. Defaults to `3072`. hidden_act (str, optional): The non-linear activation function in the feed-forward layer. ``"gelu"``, ``"relu"`` and any other paddle supported activation functions are supported. Defaults to `"gelu"`. hidden_dropout_prob (float, optional): The dropout probability for all fully connected layers in the embeddings and decoder. Defaults to `0.1`. attention_probs_dropout_prob (float, optional): The dropout probability used in MultiHeadAttention in all decoder layers to drop some attention target. Defaults to `0.1`. max_position_embeddings (int, optional): The maximum value of the dimensionality of position encoding, which dictates the maximum supported length of an input sequence. Defaults to `512`. type_vocab_size (int, optional): The vocabulary size of the `token_type_ids`. Defaults to `16`. .. note:: Please NOT using `type_vocab_size`, for it will be obsolete in the future.. initializer_range (float, optional): The standard deviation of the normal initializer. Default to `0.02`. .. note:: A normal_initializer initializes weight matrices as normal distributions. See :meth:`GPTPretrainedModel._init_weights()` for how weights are initialized in `GPTModel`. pad_token_id(int, optional): The index of padding token in the token vocabulary. Defaults to `0`. """ def __init__(self, config: GPTConfig): super(GPTModel, self).__init__(config) self.config = config self.pad_token_id = config.pad_token_id self.eos_token_id = config.eos_token_id self.bos_token_id = config.bos_token_id self.eol_token_id = config.eol_token_id self.vocab_size = config.vocab_size self.bias = paddle.tril( paddle.ones([1, 1, config.max_position_embeddings, config.max_position_embeddings], dtype="int64") ) self.embeddings = GPTEmbeddings(config) decoder_layers = nn.LayerList() for i in range(config.num_hidden_layers): decoder_layers.append(GPTDecoderLayer(config)) self.decoder = TransformerDecoder( config, decoder_layers, )
[docs] def get_input_embeddings(self): return self.embeddings.word_embeddings
[docs] def set_input_embeddings(self, value): self.embeddings.word_embeddings = value
@staticmethod def _prepare_decoder_attention_mask(attention_mask, input_shape, past_key_values_length, dtype): if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] if len(attention_mask.shape) == 2: expanded_attn_mask = _expand_2d_mask(attention_mask, dtype, tgt_length=input_shape[-1]) # For decoding phase in generation, seq_length = 1, we don't need to add causal mask if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, past_key_values_length=past_key_values_length ) expanded_attn_mask = expanded_attn_mask & combined_attention_mask # [bsz, seq_len, seq_len] -> [bsz, 1, seq_len, seq_len] elif len(attention_mask.shape) == 3: expanded_attn_mask = attention_mask.unsqueeze(1).astype("bool") # if attention_mask is already 4-D, do nothing else: expanded_attn_mask = attention_mask else: expanded_attn_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) # Convert bool attention_mask to float attention mask, which will be added to attention_scores later expanded_attn_mask = paddle.where(expanded_attn_mask, 0.0, paddle.finfo(dtype).min).astype(dtype) return expanded_attn_mask
[docs] def forward( self, input_ids=None, position_ids=None, attention_mask=None, inputs_embeds=None, use_cache=False, past_key_values=None, output_attentions=False, output_hidden_states=False, return_dict=False, ): r""" The GPTModel forward method, overrides the `__call__()` special method. Args: input_ids (Tensor, optional): Indices of input sequence tokens in the vocabulary. They are numerical representations of tokens that build the input sequence. Its data type should be `int64` and it has a shape of [batch_size, sequence_length]. Defaults to None. position_ids(Tensor, optional): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, max_position_embeddings - 1]``. Shape as `(batch_size, num_tokens)` and dtype as int64. Defaults to `None`. attention_mask (Tensor, optional): Mask used in self attention to avoid performing attention to some unwanted positions, usually the subsequent positions. It is a tensor with shape broadcasted to `[batch_size, num_attention_heads, sequence_length, sequence_length]`. It is a tensor with shape broadcasted to `[batch_size, num_attention_heads, sequence_length, sequence_length]`. For example, its shape can be [batch_size, sequence_length], [batch_size, sequence_length, sequence_length], [batch_size, num_attention_heads, sequence_length, sequence_length]. Its data type should be int64. The `masked` tokens have `0` values, and the `unmasked` tokens have `1` values. Defaults to `None`, which means nothing needed to be prevented attention to. inputs_embeds (Tensor, optional): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation of shape `(batch_size, sequence_length, hidden_size)`. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. Default to None. use_cache (bool, optional): Whether or not to use cache. Defaults to `False`. If set to `True`, key value states will be returned and can be used to speed up decoding. past_key_values (list, optional): It is only used for inference and should be None for training. Default to `None`. output_attentions (bool, optional): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. Defaults to `False`. output_hidden_states (bool, optional): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. Defaults to `False`. return_dict (bool, optional): Whether to return a :class:`~paddlenlp.transformers.model_outputs.BaseModelOutputWithPastAndCrossAttentions` object. If `False`, the output will be a tuple of tensors. Defaults to `False`. Returns: An instance of :class:`~paddlenlp.transformers.model_outputs.BaseModelOutputWithPastAndCrossAttentions` if `return_dict=True`. Otherwise it returns a tuple of tensors corresponding to ordered and not None (depending on the input arguments) fields of :class:`~paddlenlp.transformers.model_outputs.BaseModelOutputWithPastAndCrossAttentions`. Especially, When `return_dict=output_hidden_states=output_attentions=False`, returns tensor `outputs` which is the output at the last layer of the model. Its data type should be float32 and has a shape of [batch_size, sequence_length, hidden_size]. Example: .. code-block:: import paddle from paddlenlp.transformers import GPTModel, GPTTokenizer tokenizer = GPTTokenizer.from_pretrained('gpt2-medium-en') model = GPTModel.from_pretrained('gpt2-medium-en') inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!", return_token_type_ids=False) inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} output = model(**inputs) """ if self.config.sequence_parallel and use_cache: raise ValueError("We currently only support sequence parallel without cache.") if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = paddle.shape(input_ids) input_ids = input_ids.reshape((-1, input_shape[-1])) elif inputs_embeds is not None: input_shape = paddle.shape(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") # input_shape => bs, seq_len if past_key_values is None: past_key_values = tuple([None] * len(self.decoder.layers)) if position_ids is None: past_length = 0 if past_key_values[0] is not None: # bs, seq_len, num_head, head_dim past_length = paddle.shape(past_key_values[0][0])[1] position_ids = paddle.arange(past_length, input_shape[-1] + past_length, dtype="int64") position_ids = position_ids.unsqueeze(0) position_ids = paddle.expand(position_ids, input_shape) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, inputs_embeddings=inputs_embeds ) # TODO, use registered buffer length = input_shape[-1] if past_key_values[0] is not None: cache_length = paddle.shape(past_key_values[0][0])[1] length = length + cache_length else: cache_length = 0 causal_mask = self.bias[:, :, cache_length:length, :length] if attention_mask is not None: if attention_mask.dtype != paddle.int64: attention_mask = paddle.cast(attention_mask, dtype=paddle.int64) if len(attention_mask.shape) == 2: attention_mask = attention_mask[:, None, None, :] attention_mask = (1.0 - (attention_mask & causal_mask)) * -1e4 else: attention_mask = (1.0 - causal_mask) * -1e4 # The tensor returned by triu not in static graph. attention_mask.stop_gradient = True outputs = self.decoder( embedding_output, attention_mask=attention_mask, use_cache=use_cache, past_key_values=past_key_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) if output_hidden_states: if return_dict: outputs.hidden_states = (embedding_output,) + outputs.hidden_states else: # outputs is a tuple idx = 2 if use_cache else 1 all_hidden_states = (embedding_output,) + outputs[idx] outputs[idx] = all_hidden_states return outputs
[docs]class GPTPretrainingCriterion(paddle.nn.Layer): """ Criterion for GPT. It calculates the final loss. """ def __init__(self, config): super(GPTPretrainingCriterion, self).__init__() self.config = config if config.tensor_parallel_degree > 1 and config.tensor_parallel_output: self.loss_func = fleet.meta_parallel.ParallelCrossEntropy(ignore_index=config.ignore_index) else: self.loss_func = paddle.nn.CrossEntropyLoss(reduction="none", ignore_index=config.ignore_index)
[docs] def forward(self, prediction_scores, masked_lm_labels, loss_mask=None): """ Args: prediction_scores(Tensor): The logits of masked token prediction. Its data type should be float32 and its shape is [batch_size, sequence_length, vocab_size]. masked_lm_labels(Tensor): The labels of the masked language modeling, the dimensionality of `masked_lm_labels` is equal to `prediction_scores`. Its data type should be int64 and its shape is [batch_size, sequence_length, 1]. loss_mask(Tensor): Mask used for calculating the loss of the masked language modeling to avoid calculating some unwanted tokens. Its data type should be float32 and its shape is [batch_size, sequence_length, 1]. Returns: Tensor: The pretraining loss. Its data type should be float32 and its shape is [1]. """ with paddle.amp.auto_cast(False): masked_lm_loss = self.loss_func(prediction_scores.astype("float32"), masked_lm_labels.unsqueeze(2)) # skip ignore_index which loss == 0 if loss_mask is None: loss_mask = (masked_lm_loss > 0).astype("float32") loss_mask = loss_mask.reshape([-1]) masked_lm_loss = paddle.sum(masked_lm_loss.reshape([-1]) * loss_mask) loss = masked_lm_loss / loss_mask.sum() return loss
[docs]class GPTForGreedyGeneration(GPTPretrainedModel): """ The generate model for GPT-2. It use the greedy strategy and generate the output sequence with highest probability. Args: gpt (:class:`GPTModel`): An instance of `paddlenlp.transformers.GPTModel`. max_predict_len(int): The max length of the prediction. """ def __init__(self, config: GPTConfig, max_predict_len: int = 32): super(GPTForGreedyGeneration, self).__init__(config) self.gpt = GPTModel(config) self.max_predict_len = paddle.to_tensor(max_predict_len, dtype="int32") self.eol_token_id = config.eol_token_id
[docs] def model( self, input_ids, position_ids=None, attention_mask=None, masked_positions=None, use_cache=False, past_key_values=None, ): r""" Args: input_ids (Tensor, optional): See :class:`GPTModel`. position_ids (Tensor, optional): See :class:`GPTModel`. attention_mask (Tensor, optional): See :class:`GPTModel`. use_cache (bool, optional): See :class:`GPTModel`. cache (Tensor, optional): See :class:`GPTModel`. Returns: Tensor or tuple: Returns tensor `logits` or tuple `(logits, cached_kvs)`. If `use_cache` is True, tuple (`logits, cached_kvs`) will be returned. Otherwise, tensor `logits` will be returned. `logits` is the output of the gpt model. `cache_kvs` is the cache output of gpt model if `use_cache` is True. """ outputs = self.gpt( input_ids, position_ids=position_ids, attention_mask=attention_mask, use_cache=use_cache, past_key_values=past_key_values, ) if use_cache: encoder_outputs, cached_kvs = outputs[:2] else: encoder_outputs = outputs logits = paddle.matmul(encoder_outputs, self.gpt.embeddings.word_embeddings.weight, transpose_y=True) if use_cache: return logits, cached_kvs else: return logits
[docs] def forward(self, input_ids): """ Args: input_ids(Tensor): See :class:`GPTModel`. Returns: Tensor: Returns tensor `src_ids`, which means the indices of output sequence tokens in the vocabulary. They are numerical representations of tokens that build the output sequence. """ output, cached_kvs = self.model(input_ids, use_cache=True, past_key_values=None) src_ids = input_ids nid = paddle.argmax(output[:, -1, :], axis=-1).reshape([-1, 1]) src_ids = paddle.concat([src_ids, nid], axis=1) cur_len = 0 with dy2st_nocheck_guard_context(): while cur_len < self.max_predict_len: output, cached_kvs = self.model(nid, use_cache=True, past_key_values=cached_kvs) nid = paddle.argmax(output[:, -1, :], axis=-1).reshape([-1, 1]) src_ids = paddle.concat([src_ids, nid], axis=1) cur_len += 1 if paddle.max(nid) == self.eol_token_id: break return src_ids
class GPTLMHead(nn.Layer): def __init__(self, config: GPTConfig, embedding_weights=None): super(GPTLMHead, self).__init__() self.config = config self.transpose_y = True if embedding_weights is not None: self.transpose_y = True self.weight = embedding_weights else: if config.tensor_parallel_degree > 1: vocab_size = config.vocab_size // config.tensor_parallel_degree else: vocab_size = config.vocab_size self.weight = self.create_parameter( shape=[vocab_size, config.hidden_size], dtype=paddle.get_default_dtype(), ) # Must set distributed attr for Tensor Parallel ! self.weight.is_distributed = True if (vocab_size != config.vocab_size) else False if self.weight.is_distributed: self.weight.split_axis = 0 def forward(self, hidden_states, tensor_parallel_output=None): if self.config.sequence_parallel: hidden_states = GatherOp.apply(hidden_states) hidden_states = paddle.reshape_(hidden_states, [-1, self.config.seq_length, self.config.hidden_size]) if tensor_parallel_output is None: tensor_parallel_output = self.config.tensor_parallel_output logits = parallel_matmul( hidden_states, self.weight, transpose_y=self.transpose_y, tensor_parallel_output=tensor_parallel_output ) return logits
[docs]class GPTForCausalLM(GPTPretrainedModel): """ The GPT Model with a `language modeling` head on top. Args: gpt (:class:`GPTModel`): An instance of :class:`GPTModel`. """ def __init__(self, config: GPTConfig): super(GPTForCausalLM, self).__init__(config) self.gpt = GPTModel(config) self.lm_head = GPTLMHead(config, embedding_weights=self.gpt.embeddings.word_embeddings.weight) self.tie_weights() self.criterion = GPTPretrainingCriterion(config)
[docs] def get_output_embeddings(self): return self.lm_head
[docs] def forward( self, input_ids=None, position_ids=None, attention_mask=None, inputs_embeds=None, use_cache=False, past_key_values=None, labels=None, output_attentions=False, output_hidden_states=False, return_dict=False, ): r""" Args: input_ids (Tensor, optional): See :class:`GPTModel`. position_ids (Tensor, optional): See :class:`GPTModel`. attention_mask (Tensor, optional): See :class:`GPTModel`. inputs_embeds (Tensor, optional): See :class:`GPTModel`. use_cache (bool, optional): See :class:`GPTModel`. past_key_values (Tensor, optional): See :class:`GPTModel`. labels (paddle.Tensor, optional): A Tensor of shape `(batch_size, sequence_length)`. Labels for language modeling. Note that the labels are shifted inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., vocab_size]` Defaults to None. output_attentions (bool, optional): See :class:`GPTModel`. output_hidden_states (bool, optional): See :class:`GPTModel`. return_dict (bool, optional): See :class:`GPTModel`. Returns: An instance of :class:`~paddlenlp.transformers.model_outputs.BaseModelOutputWithPastAndCrossAttentions` if `return_dict=True`. Otherwise it returns a tuple of tensors corresponding to ordered and not None (depending on the input arguments) fields of :class:`~paddlenlp.transformers.model_outputs.BaseModelOutputWithPastAndCrossAttentions`. Especialy, when `return_dict=use_cache=output_attentions=output_hidden_states=False`, returns a tensor `logits` which is the output of the gpt model. """ input_type = type(input_ids) if input_ids is not None else type(inputs_embeds) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions outputs = self.gpt( input_ids, position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, past_key_values=past_key_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if isinstance(outputs, input_type): hidden_states = outputs else: hidden_states = outputs[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: loss = self.criterion(logits, labels) # # Shift so that tokens < n predict n # shift_logits = logits[:, :-1, :] # shift_labels = labels[:, 1:] # # Flatten the tokens # loss_fct = CrossEntropyLoss() # loss = loss_fct(shift_logits.reshape((-1, shift_logits.shape[-1])), shift_labels.reshape((-1,))) # outputs = [output, all_hidden_states, new_caches, all_self_attentions] if not return_dict: if isinstance(outputs, input_type): return (loss, logits) if loss is not None else logits outputs = (logits,) + outputs[1:] return ((loss,) + outputs) if loss is not None else outputs return CausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, )
def prepare_fast_entry(self, kwargs): from paddlenlp.ops import FasterGPT use_fp16_decoding = kwargs.get("use_fp16_decoding", False) decode_strategy = kwargs.get("decode_strategy") if decode_strategy == "beam_search": raise AttributeError("'beam_search' is not supported yet in the fast version of GPT") # Currently, FasterTransformer only support restricted size_per_head. size_per_head = self.gpt.config["hidden_size"] // self.gpt.config["num_attention_heads"] if size_per_head not in [32, 64, 80, 96, 128]: raise AttributeError( "'size_per_head = %d' is not supported yet in the fast version of GPT" % size_per_head ) if kwargs["forced_bos_token_id"] is not None: # not support for min_length yet in the fast version raise AttributeError("'forced_bos_token_id != None' is not supported yet in the fast version") if kwargs["min_length"] != 0: # not support for min_length yet in the fast version raise AttributeError("'min_length != 0' is not supported yet in the fast version") self._fast_entry = FasterGPT(self, use_fp16_decoding=use_fp16_decoding).forward return self._fast_entry def prepare_inputs_for_generation(self, input_ids, use_cache=False, past_key_values=None, **kwargs): # only last token for inputs_ids if cache is defined in kwargs position_ids = kwargs.get("position_ids", None) # attention_mask = kwargs.get("attention_mask", None) if past_key_values is not None: input_ids = input_ids[:, -1].unsqueeze(-1) if position_ids is not None: position_ids = position_ids[:, -1].unsqueeze(-1) return { "input_ids": input_ids, "position_ids": position_ids, "attention_mask": None, "use_cache": use_cache, "past_key_values": past_key_values, } @staticmethod def prepare_attention_mask_for_generation(input_ids, pad_token_id, eos_token_id): is_pad_token_in_inputs_ids = (pad_token_id is not None) and float(paddle.any(input_ids == pad_token_id)) is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or ( (eos_token_id is not None) and (pad_token_id != eos_token_id) ) if is_pad_token_in_inputs_ids and is_pad_token_not_equal_to_eos_token_id: attention_mask = (input_ids != pad_token_id).astype("int64") else: attention_mask = paddle.ones_like(input_ids, dtype="int64") return paddle.unsqueeze(attention_mask, axis=[1, 2])
[docs]class GPTForTokenClassification(GPTPretrainedModel): """ GPT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. Args: gpt (:class:`GPTModel`): An instance of GPTModel. num_labels (int, optional): The number of classes. Defaults to `2`. dropout (float, optional): The dropout probability for output of GPT. If None, use the same value as `hidden_dropout_prob` of `GPTModel` instance `gpt`. Defaults to None. """ def __init__(self, config: GPTConfig): super(GPTForTokenClassification, self).__init__(config) self.num_labels = config.num_labels self.gpt = GPTModel(config) # allow gpt to be config dropout_p = config.hidden_dropout_prob if config.classifier_dropout is None else config.classifier_dropout self.dropout = nn.Dropout(dropout_p) self.classifier = nn.Linear(config.hidden_size, config.num_labels)
[docs] def forward( self, input_ids=None, position_ids=None, attention_mask=None, inputs_embeds=None, labels=None, output_attentions=False, output_hidden_states=False, return_dict=False, ): r""" The GPTForTokenClassification forward method, overrides the __call__() special method. Args: input_ids (Tensor, optional): See :class:`GPTModel`. position_ids(Tensor, optional): See :class:`GPTModel`. attention_mask (list, optional): See :class:`GPTModel`. inputs_embeds (Tensor, optional): See :class:`GPTModel`. labels (Tensor, optional): Labels of shape `(batch_size, sequence_length)` for computing the sequence classification/regression loss. Indices should be in `[0, ..., num_labels - 1]`. If `num_labels == 1` a regression loss is computed (Mean-Square loss), If `num_labels > 1` a classification loss is computed (Cross-Entropy). Defaults to None. output_attentions (bool, optional): See :class:`GPTModel`. output_hidden_states (bool, optional): See :class:`GPTModel`. return_dict (bool, optional): See :class:`GPTModel`. Returns: An instance of :class:`~paddlenlp.transformers.model_outputs.TokenClassifierOutput` if `return_dict=True`. Otherwise it returns a tuple of tensors corresponding to ordered and not None (depending on the input arguments) fields of :class:`~paddlenlp.transformers.model_outputs.TokenClassifierOutput`. Especialy, when `return_dict=output_attentions=output_hidden_states=False`, returns tensor `logits`, a tensor of the input token classification logits. Shape as `[batch_size, sequence_length, num_labels]` and dtype as `float32`. Example: .. code-block:: import paddle from paddlenlp.transformers import GPTForTokenClassification, GPTTokenizer tokenizer = GPTTokenizer.from_pretrained('gpt2-medium-en') model = GPTForTokenClassification.from_pretrained('gpt2-medium-en') inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!", return_token_type_ids=False) inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} logits = model(**inputs) """ input_type = type(input_ids) if input_ids is not None else type(inputs_embeds) sequence_output = self.gpt( input_ids, position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if isinstance(sequence_output, input_type): hidden_states = sequence_output else: hidden_states = sequence_output[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.reshape((-1, self.num_labels)), labels.reshape((-1,))) if not return_dict: if isinstance(sequence_output, input_type): return (loss, logits) if loss is not None else logits outputs = (logits,) + sequence_output[1:] return ((loss,) + outputs) if loss is not None else outputs return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=sequence_output.hidden_states, attentions=sequence_output.attentions, )
[docs]class GPTForSequenceClassification(GPTPretrainedModel): """ GPT Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. Args: gpt (:class:`GPTModel`): An instance of GPTModel. num_labels (int, optional): The number of classes. Defaults to `2`. """ def __init__(self, config: GPTConfig): super(GPTForSequenceClassification, self).__init__(config) self.num_labels = config.num_labels self.gpt = GPTModel(config) self.score = nn.Linear(config.hidden_size, config.num_labels, bias_attr=False)
[docs] def forward( self, input_ids=None, position_ids=None, attention_mask=None, inputs_embeds=None, labels=None, use_cache=False, output_attentions=False, output_hidden_states=False, return_dict=False, ): r""" The GPTForSequenceClassification forward method, overrides the __call__() special method. Args: input_ids (Tensor, optional): See :class:`GPTModel`. position_ids(Tensor, optional): See :class:`GPTModel`. attention_mask (list, optional): See :class:`GPTModel`. inputs_embeds (Tensor, optional): See :class:`GPTModel`. labels (Tensor, optional): Labels of shape `(batch_size, sequence_length)` for computing the sequence classification/regression loss. Indices should be in `[0, ..., num_labels - 1]`. If `num_labels == 1` a regression loss is computed (Mean-Square loss), If `num_labels > 1` a classification loss is computed (Cross-Entropy). Defaults to None. use_cache (bool, optional): See :classL `GPTModel`. output_attentions (bool, optional): See :class:`GPTModel`. output_hidden_states (bool, optional): See :class:`GPTModel`. return_dict (bool, optional): See :class:`GPTModel`. Returns: An instance of :class:`~paddlenlp.transformers.model_outputs.SequenceClassifierOutputWithPast` if `return_dict=True`. Otherwise it returns a tuple of tensors corresponding to ordered and not None (depending on the input arguments) fields of :class:`~paddlenlp.transformers.model_outputs.SequenceClassifierOutputWithPast`. Especialy, when `return_dict=output_attentions=output_hidden_states=False`, returns tensor `logits`, a tensor of the input text classification logits. Shape as `[batch_size, num_labels]` and dtype as float32. Example: .. code-block:: import paddle from paddlenlp.transformers import GPTForSequenceClassification, GPTTokenizer tokenizer = GPTTokenizer.from_pretrained('gpt2-medium-en') model = GPTForSequenceClassification.from_pretrained('gpt2-medium-en') inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!", return_token_type_ids=False) inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} logits = model(**inputs) """ input_type = type(input_ids) if input_ids is not None else type(inputs_embeds) # sequence_output shape [bs, seq_len, hidden_size] sequence_output = self.gpt( input_ids, position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if isinstance(sequence_output, input_type): hidden_states = sequence_output else: hidden_states = sequence_output[0] # logits shape [bs, seq_len, num_class] logits = self.score(hidden_states) # padding index maybe 0 eos_token_id = self.gpt.config.eos_token_id or 0 # sequence_lengths shape [bs,] if input_ids is not None: sequence_lengths = (input_ids != eos_token_id).astype("int64").sum(axis=-1) - 1 else: inputs_shape = paddle.shape(inputs_embeds)[:-1] sequence_lengths = paddle.ones(inputs_shape[:-1], dtype="int64") * (inputs_shape[1] - 1) logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits.gather_nd( paddle.stack([paddle.arange(paddle.shape(logits)[0]), sequence_lengths], axis=-1) ) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == paddle.int64 or labels.dtype == paddle.int32): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.reshape((-1, self.num_labels)), labels.reshape((-1,))) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: if isinstance(sequence_output, input_type): return (loss, pooled_logits) if loss is not None else pooled_logits outputs = (pooled_logits,) + sequence_output[1:] return ((loss,) + outputs) if loss is not None else outputs return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=sequence_output.past_key_values, hidden_states=sequence_output.hidden_states, attentions=sequence_output.attentions, )
GPTLMHeadModel = GPTForCausalLM