tokenizer#
- class ReformerTokenizer(sentencepiece_model_file, do_lower_case=False, remove_space=True, keep_accents=True, eos_token='</s>', unk_token='<unk>', pad_token='<pad>', extra_ids=100, additional_special_tokens=[], sp_model_kwargs=None, **kwargs)[source]#
Bases:
AlbertEnglishTokenizer
Constructs a Reformer tokenizer based on SentencePiece . This tokenizer inherits from
PretrainedTokenizer
which contains most of the main methods. For more information regarding those methods, please refer to this superclass.- Parameters:
sentencepiece_model_file (str) – The vocabulary file (ends with ‘.spm’) required to instantiate a SentencePiece tokenizer.
do_lower_case (bool) – Whether or not to lowercase the input when tokenizing. Defaults to
False
.remove_space (bool) – Whether or note to remove space when tokenizing. Defaults to
True
.keep_accents (bool) – Whether or note to keep accents when tokenizing. Defaults to
False
.eos_token (str) – A special token representing the eos (end-of-sentence) token. Defaults to “</s>”.
unk_token (str) – A special token representing the unknown (out-of-vocabulary) token. An unknown token is set to be
unk_token
inorder to be converted to an ID. Defaults to “<unk>”.pad_token (str) – A special token used to make arrays of tokens the same size for batching purposes. Defaults to “<unk>”.
- property vocab_size#
Size of the base vocabulary (without the added tokens).
- Type:
int
- build_inputs_with_special_tokens(token_ids_0, token_ids_1)[source]#
Build model inputs from a sequence or a pair of sequence.
An Reformer sequence has the following format:
single sequence:
X </s>
pair of sequences:
A </s> B </s>
- Parameters:
token_ids_0 (List[int]) – List of IDs to which the special tokens will be added.
token_ids_1 (List[int], optional) – Optional second list of IDs for sequence pairs. Defaults to None.
- Returns:
List of input_id with the appropriate special tokens.
- Return type:
List[int]
- build_offset_mapping_with_special_tokens(offset_mapping_0, offset_mapping_1=None)[source]#
Build offset map from a pair of offset map by concatenating and adding offsets of special tokens.
Should be overridden in a subclass if the model has a special way of building those.
- Parameters:
offset_mapping_0 (List[tuple]) – List of char offsets to which the special tokens will be added.
offset_mapping_1 (List[tuple], optional) – Optional second list of char offsets for offset mapping pairs.
- Returns:
List of char offsets with the appropriate offsets of special tokens.
- Return type:
List[tuple]
- create_token_type_ids_from_sequences(token_ids_0, token_ids_1=None)[source]#
Create a mask from the two sequences.
If
token_ids_1
isNone
, this method only returns the first portion of the mask (0s).- Parameters:
token_ids_0 (List[int]) – List of IDs.
token_ids_1 (List[int], optional) – Optional second list of IDs for sequence pairs.
- Returns:
List of token_type_id according to the given sequence(s).
- Return type:
List[int]
- get_special_tokens_mask(token_ids_0, token_ids_1=None, already_has_special_tokens=False)[source]#
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer
encode
methods.- Parameters:
token_ids_0 (List[int]) – List of ids of the first sequence.
token_ids_1 (List[int], optional) – List of ids of the second sequence.
already_has_special_tokens (bool, optional) – Whether or not the token list is already formatted with special tokens for the model. Defaults to None.
- Returns:
- The list of integers in the range [0, 1]:
1 for a special token, 0 for a sequence token.
- Return type:
List[int]