paddlenlp.transformers.roberta.tokenizer 源代码

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import io
import os
import json

from paddle.utils import try_import

from .. import BasicTokenizer, PretrainedTokenizer, WordpieceTokenizer, GPTTokenizer, AddedToken
from ..gpt.tokenizer import bytes_to_unicode
from ...utils.downloader import get_path_from_url, COMMUNITY_MODEL_PREFIX
from ...utils.env import MODEL_HOME
from ...utils.log import logger

__all__ = ['RobertaTokenizer', 'RobertaChineseTokenizer', 'RobertaBPETokenizer']

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "hfl/roberta-wwm-ext": 512,
    "hfl/roberta-wwm-ext-large": 512,
    "hfl/rbt6": 512,
    "hfl/rbt4": 512,
    "hfl/rbt3": 512,
    "hfl/rbtl3": 512
}


[文档]class RobertaChineseTokenizer(PretrainedTokenizer): """ Constructs a RoBerta tokenizer. It uses a basic tokenizer to do punctuation splitting, lower casing and so on, and follows a WordPiece tokenizer to tokenize as subwords. This tokenizer inherits from :class:`~paddlenlp.transformers.tokenizer_utils.PretrainedTokenizer` which contains most of the main methods. For more information regarding those methods, please refer to this superclass. Args: vocab_file (str): The vocabulary file path (ends with '.txt') required to instantiate a `WordpieceTokenizer`. do_lower_case (bool): Whether or not to lowercase the input when tokenizing. Defaults to`True`. unk_token (str): A special token representing the *unknown (out-of-vocabulary)* token. An unknown token is set to be `unk_token` inorder to be converted to an ID. Defaults to "[UNK]". sep_token (str): A special token separating two different sentences in the same input. Defaults to "[SEP]". pad_token (str): A special token used to make arrays of tokens the same size for batching purposes. Defaults to "[PAD]". cls_token (str): A special token used for sequence classification. It is the last token of the sequence when built with special tokens. Defaults to "[CLS]". mask_token (str): A special token representing a masked token. This is the token used in the masked language modeling task which the model tries to predict the original unmasked ones. Defaults to "[MASK]". Examples: .. code-block:: from paddlenlp.transformers import RobertaTokenizer tokenizer = RobertaTokenizer.from_pretrained('roberta-wwm-ext') tokens = tokenizer('He was a puppeteer') #{'input_ids': [101, 9245, 9947, 143, 11227, 9586, 8418, 8854, 8180, 102], #'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}、 """ resource_files_names = {"vocab_file": "vocab.txt"} # for save_pretrained pretrained_resource_files_map = { "vocab_file": { "hfl/roberta-wwm-ext": "https://bj.bcebos.com/paddlenlp/models/transformers/roberta_base/vocab.txt", "hfl/roberta-wwm-ext-large": "https://bj.bcebos.com/paddlenlp/models/transformers/roberta_large/vocab.txt", "hfl/rbt6": "https://bj.bcebos.com/paddlenlp/models/transformers/rbt6/vocab.txt", "hfl/rbt4": "https://bj.bcebos.com/paddlenlp/models/transformers/rbt4/vocab.txt", "hfl/rbt3": "https://bj.bcebos.com/paddlenlp/models/transformers/rbt3/vocab.txt", "hfl/rbtl3": "https://bj.bcebos.com/paddlenlp/models/transformers/rbtl3/vocab.txt", } } pretrained_init_configuration = { "hfl/roberta-wwm-ext": { "do_lower_case": True }, "hfl/roberta-wwm-ext-large": { "do_lower_case": True }, "hfl/rbt6": { "do_lower_case": True }, "hfl/rbt4": { "do_lower_case": True }, "hfl/rbt3": { "do_lower_case": True }, "hfl/rbtl3": { "do_lower_case": True }, } max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kwargs): if not os.path.isfile(vocab_file): raise ValueError( "Can't find a vocabulary file at path '{}'. To load the " "vocabulary from a pretrained model please use " "`tokenizer = RobertaTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" .format(vocab_file)) self.do_lower_case = do_lower_case self.vocab = self.load_vocabulary(vocab_file, unk_token=unk_token) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=unk_token) @property def vocab_size(self): """ Return the size of vocabulary. Returns: int: The size of vocabulary. """ return len(self.vocab)
[文档] def get_vocab(self): return dict(self.vocab._token_to_idx, **self.added_tokens_encoder)
def _tokenize(self, text): """ End-to-end tokenization for Roberta models. Args: text (str): The text to be tokenized. Returns: list: A list of string representing converted tokens. """ split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize( text, never_split=self.all_special_tokens): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens
[文档] def convert_tokens_to_string(self, tokens): """ Converts a sequence of tokens (list of string) to a single string. Since the usage of WordPiece introducing `##` to concat subwords, also removes `##` when converting. Args: tokens (list): A list of string representing tokens to be converted. Returns: str: Converted string from tokens. Examples: .. code-block:: from paddlenlp.transformers import RobertaTokenizer tokenizer = RobertaTokenizer.from_pretrained('roberta-wwm-ext') tokens = tokenizer.tokenize('He was a puppeteer') ''' ['he', 'was', 'a', 'puppet', '##eer'] ''' strings = tokenizer.convert_tokens_to_string(tokens) ''' he was a puppeteer ''' """ out_string = " ".join(tokens).replace(" ##", "").strip() return out_string
[文档] def num_special_tokens_to_add(self, pair=False): """ Returns the number of added tokens when encoding a sequence with special tokens. Args: pair(bool): Whether the input is a sequence pair or a single sequence. Defaults to `False` and the input is a single sequence. Returns: int: Number of tokens added to sequences. """ token_ids_0 = [] token_ids_1 = [] return len( self.build_inputs_with_special_tokens( token_ids_0, token_ids_1 if pair else None))
[文档] def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RoBERTa sequence has the following format: - single sequence: ``[CLS] X [SEP]`` - pair of sequences: ``[CLS] A [SEP] B [SEP]`` Args: token_ids_0 (List[int]): List of IDs to which the special tokens will be added. token_ids_1 (List[int], optional): Optional second list of IDs for sequence pairs. Defaults to None. Returns: List[int]: List of input_id with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] _cls = [self.cls_token_id] _sep = [self.sep_token_id] return _cls + token_ids_0 + _sep + token_ids_1 + _sep
[文档] def build_offset_mapping_with_special_tokens(self, offset_mapping_0, offset_mapping_1=None): """ Build offset map from a pair of offset map by concatenating and adding offsets of special tokens. A RoBERTa offset_mapping has the following format: - single sequence: ``(0,0) X (0,0)`` - pair of sequences: ``(0,0) A (0,0) B (0,0)`` Args: offset_mapping_0 (List[tuple]): List of wordpiece offsets to which the special tokens will be added. offset_mapping_1 (List[tuple], optional): Optional second list of wordpiece offsets for offset mapping pairs. Defaults to None. Returns: List[tuple]: A list of wordpiece offsets with the appropriate offsets of special tokens. """ if offset_mapping_1 is None: return [(0, 0)] + offset_mapping_0 + [(0, 0)] return [(0, 0)] + offset_mapping_0 + [(0, 0) ] + offset_mapping_1 + [(0, 0)]
[文档] def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None): """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A RoBERTa sequence pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (List[int]): A list of `inputs_ids` for the first sequence. token_ids_1 (List[int], optional): Optional second list of IDs for sequence pairs. Defaults to None. Returns: List[int]: List of token_type_id according to the given sequence(s). """ _sep = [self.sep_token_id] _cls = [self.cls_token_id] if token_ids_1 is None: return len(_cls + token_ids_0 + _sep) * [0] return len(_cls + token_ids_0 + _sep) * [0] + len(token_ids_1 + _sep) * [1]
[文档] def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False): """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``encode`` methods. Args: token_ids_0 (List[int]): A list of `inputs_ids` for the first sequence. token_ids_1 (List[int], optional): Optional second list of IDs for sequence pairs. Defaults to None. already_has_special_tokens (bool, optional): Whether or not the token list is already formatted with special tokens for the model. Defaults to None. Returns: List[int]: The list of integers either be 0 or 1: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return list( map( lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ( [0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1]
[文档]class RobertaBPETokenizer(GPTTokenizer): """ Constructs a Roberta tokenizer based on byte-level Byte-Pair-Encoding. This tokenizer inherits from :class:`~paddlenlp.transformers.GPTTokenizer` which contains most of the main methods. For more information regarding those methods, please refer to this superclass. Args: vocab_file (str): Path to the vocab file. The vocab file contains a mapping from vocabulary strings to indices. merges_file (str): Path to the merge file. The merge file is used to split the input sentence into "subword" units. The vocab file is then used to encode those units as intices. errors (str): Paradigm to follow when decoding bytes to UTF-8. Defaults to `'replace'`. Examples: .. code-block:: from paddlenlp.transformers import RobertaBPETokenizer tokenizer = RobertaBPETokenizer.from_pretrained('roberta-base') tokens = tokenizer('This is a simple Paddle') #{'input_ids': [0, 713, 16, 10, 2007, 221, 33151, 2], #'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0]} """ resource_files_names = { "vocab_file": "vocab.json", "merges_file": "merges.txt" } # for save_pretrained pretrained_resource_files_map = { "vocab_file": { "roberta-base": "https://bj.bcebos.com/paddlenlp/models/community/roberta-base/vocab.json", "roberta-large": "https://bj.bcebos.com/paddlenlp/models/community/roberta-large/vocab.json", }, "merges_file": { "roberta-base": "https://bj.bcebos.com/paddlenlp/models/community/roberta-base/merges.txt", "roberta-large": "https://bj.bcebos.com/paddlenlp/models/community/roberta-large/merges.txt", }, } pretrained_init_configuration = { "roberta-base": {}, "roberta-large": {}, } max_model_input_sizes = { "roberta-base": 512, "roberta-large": 512, } def __init__(self, vocab_file, merges_file, errors='replace', bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, **kwargs): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance( bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance( eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance( sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance( cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance( unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance( pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance( mask_token, str) else mask_token self._build_special_tokens_map_extended(bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token) self._vocab_file = vocab_file self._merges_file = merges_file self.num_command_tokens = 2 self.num_type_tokens = 2 with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.num_tokens = len(self.encoder) self.num_text_tokens = self.num_tokens - 1 self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_data = merges_handle.read().split('\n')[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_data] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space re = try_import("regex") self.pat = re.compile( r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
[文档] def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder)
[文档] def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. """ _cls = [self.cls_token_id] _sep = [self.sep_token_id] if token_ids_1 is None: return _cls + token_ids_0 + _sep return _cls + token_ids_0 + _sep + _sep + token_ids_1 + _sep
[文档] def get_offset_mapping(self, text): tokens = self._tokenize(text) offset_mapping = [] offset = 0 for token in tokens: if token[0] == 'Ġ': offset_mapping.append((offset + 1, offset + len(token))) else: offset_mapping.append((offset, offset + len(token))) offset += len(token) return offset_mapping
[文档] def build_offset_mapping_with_special_tokens(self, offset_mapping_0, offset_mapping_1=None): """ Build offset map from a pair of offset map by concatenating and adding offsets of special tokens. A Roberta offset_mapping has the following format: - single sequence: ``(0,0) X (0,0)`` - pair of sequences: ``(0,0) A (0,0) (0,0) B (0,0)`` Args: offset_mapping_0 (List[tuple]): List of wordpiece offsets to which the special tokens will be added. offset_mapping_1 (List[tuple], optional): Optional second list of wordpiece offsets for offset mapping pairs. Defaults to None. Returns: List[tuple]: A list of wordpiece offsets with the appropriate offsets of special tokens. """ if offset_mapping_1 is None: return [(0, 0)] + offset_mapping_0 + [(0, 0)] return [(0, 0)] + offset_mapping_0 + [(0, 0), (0, 0) ] + offset_mapping_1 + [(0, 0)]
[文档] def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False): """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``encode`` methods. Args: token_ids_0 (List[int]): A list of `inputs_ids` for the first sequence. token_ids_1 (List[int], optinal): Optional second list of IDs for sequence pairs. Defaults to None. already_has_special_tokens (bool, optional): Whether or not the token list is already formatted with special tokens for the model. Defaults to None. Returns: List[int]: The list of integers either be 0 or 1: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ( [0] * len(token_ids_1)) + [1]
[文档] def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None): sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
[文档] def convert_tokens_to_string(self, tokens): text = ''.join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors) return text
[文档] def num_special_tokens_to_add(self, pair=False): """ Returns the number of added tokens when encoding a sequence with special tokens. Args: pair(bool): Whether the input is a sequence pair or a single sequence. Defaults to `False` and the input is a single sequence. Returns: int: Number of tokens added to sequences. """ token_ids_0 = [] token_ids_1 = [] return len( self.build_inputs_with_special_tokens( token_ids_0, token_ids_1 if pair else None))
[文档] def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): text = " " + text return (text, kwargs)
[文档]class RobertaTokenizer: """ RobertaTokenizer is a generic tokenizer class that will be instantiated as either RobertaChineseTokenizer or RobertaBPETokenizer when created with the RobertaTokenizer.from_pretrained() class method. """ chinese_model_names = RobertaChineseTokenizer.pretrained_init_configuration.keys( ) english_model_names = RobertaBPETokenizer.pretrained_init_configuration.keys( ) tokenizer_config_file = "tokenizer_config.json" def __init__(self, *args, **kwargs): raise EnvironmentError( f"{self.__class__.__name__} is designed to be instantiated " f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path).`" ) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): # From built-in pretrained models if pretrained_model_name_or_path in cls.chinese_model_names: return RobertaChineseTokenizer.from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs) elif pretrained_model_name_or_path in cls.english_model_names: return RobertaBPETokenizer.from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs) # From local dir path elif os.path.isdir(pretrained_model_name_or_path): config_file = os.path.join(pretrained_model_name_or_path, cls.tokenizer_config_file) if os.path.exists(config_file): with io.open(config_file, encoding="utf-8") as f: init_kwargs = json.load(f) # class name corresponds to this configuration init_class = init_kwargs.pop("init_class", None) if init_class == "RobertaBPETokenizer": return RobertaBPETokenizer.from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs) if init_class == "RobertaChineseTokenizer" or init_class == "BertTokenizer": return RobertaChineseTokenizer.from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs) return RobertaBPETokenizer.from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs) else: # Assuming from community-contributed pretrained models config_file = os.path.join(COMMUNITY_MODEL_PREFIX, pretrained_model_name_or_path, cls.tokenizer_config_file) default_root = os.path.join(MODEL_HOME, pretrained_model_name_or_path) try: resolved_config_file = get_path_from_url( config_file, default_root) except RuntimeError as err: logger.error(err) raise RuntimeError( f"Can't find load tokenizer_config_file for '{pretrained_model_name_or_path}'.\n" f"Please make sure that '{pretrained_model_name_or_path}' is:\n" "a correct model-identifier of community-contributed pretrained models.\n" ) with io.open(resolved_config_file, encoding="utf-8") as f: init_kwargs = json.load(f) init_class = init_kwargs.pop("init_class", None) if init_class == "RobertaBPETokenizer": return RobertaBPETokenizer.from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs) elif init_class == "RobertaChineseTokenizer" or init_class == "BertTokenizer": return RobertaChineseTokenizer.from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs) else: return RobertaBPETokenizer.from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs)