paddlenlp.transformers.mpnet.modeling 源代码

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import math

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from .. import PretrainedModel, register_base_model
from ..activations import ACT2FN

__all__ = [
    "MPNetModel",
    "MPNetPretrainedModel",
    "MPNetForMaskedLM",
    "MPNetForSequenceClassification",
    "MPNetForMultipleChoice",
    "MPNetForTokenClassification",
    "MPNetForQuestionAnswering",
]


def create_position_ids_from_input_ids(input_ids, padding_idx=1):
    """
    Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
    are ignored. This is modified from fairseq's `utils.make_positions`. :param paddle.Tensor x: :return paddle.Tensor:
    """
    mask = (input_ids != padding_idx).astype(paddle.int64)
    incremental_indices = paddle.cumsum(mask, axis=1).astype(mask.dtype) * mask
    return incremental_indices.astype(paddle.int64) + padding_idx


class MPNetEmbeddings(nn.Layer):
    """
    Include embeddings from word and position embeddings.
    """

    def __init__(
        self,
        vocab_size,
        hidden_size=768,
        hidden_dropout_prob=0.1,
        max_position_embeddings=514,
        layer_norm_eps=1e-5,
        pad_token_id=1,
    ):
        super(MPNetEmbeddings, self).__init__()
        self.padding_idx = pad_token_id
        self.word_embeddings = nn.Embedding(vocab_size, hidden_size, padding_idx=self.padding_idx)
        self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size, padding_idx=self.padding_idx)
        self.layer_norm = nn.LayerNorm(hidden_size, epsilon=layer_norm_eps)
        self.dropout = nn.Dropout(hidden_dropout_prob)

    def forward(self, input_ids, position_ids=None):

        if position_ids is None:
            position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)

        embeddings = words_embeddings + position_embeddings
        embeddings = self.layer_norm(embeddings)
        embeddings = self.dropout(embeddings)

        return embeddings


class MPNetAttention(nn.Layer):
    def __init__(
        self,
        hidden_size=768,
        num_attention_heads=12,
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        layer_norm_eps=1e-5,
    ):
        super(MPNetAttention, self).__init__()
        if hidden_size % num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (hidden_size, num_attention_heads)
            )
        self.num_attention_heads = num_attention_heads
        self.attention_head_size = hidden_size // num_attention_heads
        self.all_head_size = self.num_attention_heads * self.attention_head_size
        self.scale = self.attention_head_size**-0.5
        self.q = nn.Linear(hidden_size, self.all_head_size)
        self.k = nn.Linear(hidden_size, self.all_head_size)
        self.v = nn.Linear(hidden_size, self.all_head_size)
        self.o = nn.Linear(hidden_size, hidden_size)

        self.attention_dropout = nn.Dropout(attention_probs_dropout_prob)
        self.layer_norm = nn.LayerNorm(hidden_size, epsilon=layer_norm_eps)
        self.output_dropout = nn.Dropout(hidden_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.shape[:-1] + [
            self.num_attention_heads,
            self.attention_head_size,
        ]
        x = x.reshape(new_x_shape)
        return x.transpose(perm=(0, 2, 1, 3))

    def forward(self, hidden_states, attention_mask=None, position_bias=None):
        q = self.q(hidden_states)
        k = self.k(hidden_states)
        v = self.v(hidden_states)

        q = self.transpose_for_scores(q)
        k = self.transpose_for_scores(k)
        v = self.transpose_for_scores(v)

        attention_scores = paddle.matmul(q, k, transpose_y=True) * self.scale

        if position_bias is not None:
            attention_scores += position_bias

        if attention_mask is not None:
            attention_scores = attention_scores + attention_mask

        attention_probs = F.softmax(attention_scores, axis=-1)

        attention_probs = self.attention_dropout(attention_probs)

        context_layer = paddle.matmul(attention_probs, v)

        context_layer = context_layer.transpose(perm=(0, 2, 1, 3))
        new_context_layer_shape = context_layer.shape[:-2] + [self.all_head_size]
        context_layer = context_layer.reshape(new_context_layer_shape)

        projected_context_layer = self.o(context_layer)
        projected_context_layer_dropout = self.output_dropout(projected_context_layer)
        layer_normed_context_layer = self.layer_norm(hidden_states + projected_context_layer_dropout)

        return layer_normed_context_layer, attention_scores


class MPNetLayer(nn.Layer):
    def __init__(
        self,
        hidden_size,
        num_attention_heads,
        intermediate_size,
        hidden_act,
        hidden_dropout_prob,
        attention_probs_dropout_prob,
        layer_norm_eps,
    ):
        super(MPNetLayer, self).__init__()
        self.attention = MPNetAttention(
            hidden_size,
            num_attention_heads,
            hidden_dropout_prob,
            attention_probs_dropout_prob,
            layer_norm_eps,
        )
        self.ffn = nn.Linear(hidden_size, intermediate_size)
        self.ffn_output = nn.Linear(intermediate_size, hidden_size)
        self.activation = ACT2FN[hidden_act]
        self.layer_norm = nn.LayerNorm(hidden_size, epsilon=layer_norm_eps)
        self.dropout = nn.Dropout(hidden_dropout_prob)

    def forward(self, hidden_states, attention_mask=None, position_bias=None):
        attention_output, layer_att = self.attention(
            hidden_states, attention_mask=attention_mask, position_bias=position_bias
        )

        ffn_output = self.ffn(attention_output)
        ffn_output = self.activation(ffn_output)
        ffn_output = self.ffn_output(ffn_output)

        ffn_output_dropout = self.dropout(ffn_output)
        hidden_states = self.layer_norm(ffn_output_dropout + attention_output)

        return hidden_states, layer_att


class MPNetEncoder(nn.Layer):
    def __init__(
        self,
        hidden_size,
        num_hidden_layers,
        num_attention_heads,
        intermediate_size,
        hidden_act,
        hidden_dropout_prob,
        attention_probs_dropout_prob,
        relative_attention_num_buckets,
        layer_norm_eps,
    ):
        super(MPNetEncoder, self).__init__()
        layer = MPNetLayer(
            hidden_size,
            num_attention_heads,
            intermediate_size,
            hidden_act,
            hidden_dropout_prob,
            attention_probs_dropout_prob,
            layer_norm_eps,
        )
        self.layer = nn.LayerList([copy.deepcopy(layer) for _ in range(num_hidden_layers)])
        self.relative_attention_bias = nn.Embedding(relative_attention_num_buckets, num_attention_heads)

    def forward(self, hidden_states, attention_mask=None):
        position_bias = self.compute_position_bias(hidden_states)
        all_encoder_layers = []
        all_encoder_att = []
        for i, layer_module in enumerate(self.layer):
            all_encoder_layers.append(hidden_states)
            hidden_states, layer_att = layer_module(all_encoder_layers[i], attention_mask, position_bias)
            all_encoder_att.append(layer_att)
        all_encoder_layers.append(hidden_states)
        return all_encoder_layers, all_encoder_att

    def compute_position_bias(self, x, position_ids=None, num_buckets=32):
        bsz, qlen, klen = x.shape[0], x.shape[1], x.shape[1]
        if position_ids is not None:
            context_position = position_ids.unsqueeze(2)
            memory_position = position_ids.unsqueeze(1)
        else:
            context_position = paddle.arange(qlen).unsqueeze(1)
            memory_position = paddle.arange(klen).unsqueeze(0)

        relative_position = memory_position - context_position

        rp_bucket = self.relative_position_bucket(relative_position, num_buckets=num_buckets)

        values = self.relative_attention_bias(rp_bucket)
        values = values.transpose(perm=[2, 0, 1]).unsqueeze(0)
        values = values.expand(shape=(bsz, values.shape[1], qlen, klen))
        return values

    @staticmethod
    def relative_position_bucket(relative_position, num_buckets=32, max_distance=128):
        ret = 0
        n = -relative_position

        num_buckets //= 2
        ret += (n < 0).astype(paddle.int64) * num_buckets
        n = paddle.abs(n)

        max_exact = num_buckets // 2
        is_small = n < max_exact

        val_if_large = max_exact + (
            paddle.log(n.astype(paddle.float32) / max_exact)
            / math.log(max_distance / max_exact)
            * (num_buckets - max_exact)
        ).astype(paddle.int64)

        val_if_large = paddle.minimum(val_if_large, paddle.full_like(val_if_large, num_buckets - 1))
        ret += paddle.where(is_small, n, val_if_large)
        return ret


class MPNetPooler(nn.Layer):
    """
    Pool the result of MPNetEncoder.
    """

    def __init__(self, hidden_size):
        super(MPNetPooler, self).__init__()
        self.dense = nn.Linear(hidden_size, hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


[文档]class MPNetPretrainedModel(PretrainedModel): """ An abstract class for pretrained MPNet models. It provides MPNet related `model_config_file`, `resource_files_names`, `pretrained_resource_files_map`, `pretrained_init_configuration`, `base_model_prefix` for downloading and loading pretrained models. See :class:`~paddlenlp.transformers.model_utils.PretrainedModel` for more details. """ pretrained_init_configuration = { "mpnet-base": { "vocab_size": 30527, "hidden_size": 768, "num_hidden_layers": 12, "num_attention_heads": 12, "intermediate_size": 3072, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 514, "relative_attention_num_buckets": 32, "layer_norm_eps": 1e-05, "initializer_range": 0.02, "pad_token_id": 1, } } pretrained_resource_files_map = { "model_state": { "mpnet-base": "https://bj.bcebos.com/paddlenlp/models/transformers/mpnet/mpnet-base/model_state.pdparams", } } base_model_prefix = "mpnet"
[文档] def init_weights(self, layer): """Initialization hook""" if isinstance(layer, (nn.Linear, nn.Embedding)): # In the dygraph mode, use the `set_value` to reset the parameter directly, # and reset the `state_dict` to update parameter in static mode. if isinstance(layer.weight, paddle.Tensor): layer.weight.set_value( paddle.tensor.normal( mean=0.0, std=self.initializer_range if hasattr(self, "initializer_range") else self.mpnet.config["initializer_range"], shape=layer.weight.shape, ) )
[文档]@register_base_model class MPNetModel(MPNetPretrainedModel): """ The bare MPNet Model transformer outputting raw hidden-states. This model inherits from :class:`~paddlenlp.transformers.model_utils.PretrainedModel`. Refer to the superclass documentation for the generic methods. This model is also a Paddle `paddle.nn.Layer <https://www.paddlepaddle.org.cn/documentation /docs/en/api/paddle/fluid/dygraph/layers/Layer_en.html>`__ subclass. Use it as a regular Paddle Layer and refer to the Paddle documentation for all matter related to general usage and behavior. Args: vocab_size (int): Vocabulary size of `inputs_ids` in `MPNetModel`. Also is the vocab size of token embedding matrix. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling `MPNetModel`. hidden_size (int, optional): Dimensionality of the embedding layer, encoder layer and pooler layer. Defaults to `768`. num_hidden_layers (int, optional): Number of hidden layers in the Transformer encoder. Defaults to `12`. num_attention_heads (int, optional): Number of attention heads for each attention layer in the Transformer encoder. Defaults to `12`. intermediate_size (int, optional): Dimensionality of the feed-forward (ff) layer in the encoder. Input tensors to ff layers are firstly projected from `hidden_size` to `intermediate_size`, and then projected back to `hidden_size`. Typically `intermediate_size` is larger than `hidden_size`. Defaults to `3072`. hidden_act (str, optional): The non-linear activation function in the feed-forward layer. ``"gelu"``, ``"relu"`` and any other paddle supported activation functions are supported. Defaults to `"gelu"`. hidden_dropout_prob (float, optional): The dropout probability for all fully connected layers in the embeddings and encoder. Defaults to `0.1`. attention_probs_dropout_prob (float, optional): The dropout probability used in MultiHeadAttention in all encoder layers to drop some attention target. Defaults to `0.1`. max_position_embeddings (int, optional): The maximum value of the dimensionality of position encoding, which dictates the maximum supported length of an input sequence. Defaults to `514`. initializer_range (float, optional): The standard deviation of the normal initializer. Defaults to 0.02. .. note:: A normal_initializer initializes weight matrices as normal distributions. See :meth:`MPNetPretrainedModel.init_weights()` for how weights are initialized in `MPNetModel`. relative_attention_num_buckets (int, optional): The number of buckets to use for each attention layer. Defaults to `32`. layer_norm_eps (float, optional): The epsilon used by the layer normalization layers. Defaults to `1e-5`. pad_token_id (int, optional): The index of padding token in the token vocabulary. Defaults to `1`. """ def __init__( self, vocab_size, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=514, initializer_range=0.02, relative_attention_num_buckets=32, layer_norm_eps=1e-5, pad_token_id=1, ): super(MPNetModel, self).__init__() self.initializer_range = initializer_range self.embeddings = MPNetEmbeddings( vocab_size, hidden_size, hidden_dropout_prob, max_position_embeddings, layer_norm_eps, pad_token_id, ) self.encoder = MPNetEncoder( hidden_size, num_hidden_layers, num_attention_heads, intermediate_size, hidden_act, hidden_dropout_prob, attention_probs_dropout_prob, relative_attention_num_buckets, layer_norm_eps, ) self.pooler = MPNetPooler(hidden_size) self.apply(self.init_weights)
[文档] def forward(self, input_ids, position_ids=None, attention_mask=None): r""" The MPNetModel forward method, overrides the `__call__()` special method. Args: input_ids (Tensor): Indices of input sequence tokens in the vocabulary. They are numerical representations of tokens that build the input sequence. Its data type should be `int64` and it has a shape of [batch_size, sequence_length]. position_ids(Tensor, optional): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, max_position_embeddings - 1]``. Shape as `(batch_size, num_tokens)` and dtype as int64. Defaults to `None`. attention_mask (Tensor, optional): Mask used in multi-head attention to avoid performing attention on to some unwanted positions, usually the paddings or the subsequent positions. Its data type can be int, float and bool. If its data type is int, the values should be either 0 or 1. - **1** for tokens that **not masked**, - **0** for tokens that **masked**. It is a tensor with shape broadcasted to `[batch_size, num_attention_heads, sequence_length, sequence_length]`. Defaults to `None`, which means nothing needed to be prevented attention to. Returns: tuple: Returns tuple (`sequence_output`, `pooled_output`). With the fields: - `sequence_output` (Tensor): Sequence of hidden-states at the last layer of the model. It's data type should be float32 and its shape is [batch_size, sequence_length, hidden_size]. - `pooled_output` (Tensor): The output of first token (`<s>`) in sequence. We "pool" the model by simply taking the hidden state corresponding to the first token. Its data type should be float32 and its shape is [batch_size, hidden_size]. Example: .. code-block:: import paddle from paddlenlp.transformers import MPNetModel, MPNetTokenizer tokenizer = MPNetTokenizer.from_pretrained('mpnet-base') model = MPNetModel.from_pretrained('mpnet-base') inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!") inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} outputs = model(**inputs) """ if attention_mask is None: attention_mask = (input_ids != self.embeddings.padding_idx).astype(input_ids.dtype) if attention_mask.ndim == 2: attention_mask = attention_mask.unsqueeze(axis=[1, 2]) attention_mask = (1.0 - attention_mask) * -10000.0 embedding_output = self.embeddings(input_ids, position_ids) encoder_outputs, _ = self.encoder(embedding_output, attention_mask) sequence_output = encoder_outputs[-1] pooled_output = self.pooler(sequence_output) return sequence_output, pooled_output
class MPNetLMHead(nn.Layer): """ MPNet Model with a `language modeling` head on top for CLM fine-tuning. """ def __init__( self, hidden_size, vocab_size, hidden_act="gelu", embedding_weights=None, layer_norm_eps=1e-5, ): super(MPNetLMHead, self).__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.activation = ACT2FN[hidden_act] self.layer_norm = nn.LayerNorm(hidden_size, epsilon=layer_norm_eps) self.decoder_weight = embedding_weights self.decoder_bias = self.create_parameter(shape=[vocab_size], dtype=self.decoder_weight.dtype, is_bias=True) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = paddle.matmul(hidden_states, self.decoder_weight, transpose_y=True) + self.decoder_bias return hidden_states
[文档]class MPNetForMaskedLM(MPNetPretrainedModel): """ MPNet Model with a `language modeling` head on top. Args: MPNet (:class:`MPNetModel`): An instance of :class:`MPNetModel`. """ def __init__(self, mpnet): super(MPNetForMaskedLM, self).__init__() self.mpnet = mpnet self.lm_head = MPNetLMHead( self.mpnet.config["hidden_size"], self.mpnet.config["vocab_size"], self.mpnet.config["hidden_act"], self.mpnet.embeddings.word_embeddings.weight, self.mpnet.config["layer_norm_eps"], ) self.apply(self.init_weights)
[文档] def forward( self, input_ids, position_ids=None, attention_mask=None, labels=None, ): r""" Args: input_ids (Tensor): See :class:`MPNetModel`. position_ids (Tensor, optional): See :class:`MPNetModel`. attention_mask (Tensor, optional): See :class:`MPNetModel`. labels (Tensor, optional): The Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., vocab_size]`` Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., vocab_size]`` Its shape is [batch_size, sequence_length]. Returns: tuple: Returns tuple (`masked_lm_loss`, `prediction_scores`, ``sequence_output`). With the fields: - `masked_lm_loss` (Tensor): The masked lm loss. Its data type should be float32 and its shape is [1]. - `prediction_scores` (Tensor): The scores of masked token prediction. Its data type should be float32. Its shape is [batch_size, sequence_length, vocab_size]. - `sequence_output` (Tensor): Sequence of hidden-states at the last layer of the model. Its data type should be float32. Its shape is `[batch_size, sequence_length, hidden_size]`. """ sequence_output, pooled_output = self.mpnet( input_ids, position_ids=position_ids, attention_mask=attention_mask ) prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss() masked_lm_loss = loss_fct( prediction_scores.reshape(shape=(-1, self.mpnet.config["vocab_size"])), labels.reshape(shape=(-1,)), ) return masked_lm_loss, prediction_scores, sequence_output return prediction_scores, sequence_output
[文档]class MPNetForSequenceClassification(MPNetPretrainedModel): """ MPNet Model with a linear layer on top of the output layer, designed for sequence classification/regression tasks like GLUE tasks. Args: mpnet (:class:`MPNetModel`): An instance of MPNetModel. num_classes (int, optional): The number of classes. Defaults to `2`. dropout (float, optional): The dropout probability for output of MPNet. If None, use the same value as `hidden_dropout_prob` of `MPNetModel` instance `mpnet`. Defaults to None. """ def __init__(self, mpnet, num_classes=2, dropout=None): super(MPNetForSequenceClassification, self).__init__() self.num_classes = num_classes self.mpnet = mpnet self.dropout = nn.Dropout(dropout if dropout is not None else self.mpnet.config["hidden_dropout_prob"]) self.classifier = nn.Linear(self.mpnet.config["hidden_size"], num_classes) self.apply(self.init_weights)
[文档] def forward(self, input_ids, position_ids=None, attention_mask=None): r""" The MPNetForSequenceClassification forward method, overrides the __call__() special method. Args: input_ids (Tensor): See :class:`MPNetModel`. position_ids(Tensor, optional): See :class:`MPNetModel`. attention_mask (list, optional): See :class:`MPNetModel`. Returns: Tensor: Returns tensor `logits`, a tensor of the input text classification logits. Shape as `[batch_size, num_classes]` and dtype as float32. Example: .. code-block:: import paddle from paddlenlp.transformers import MPNetForSequenceClassification, MPNetTokenizer tokenizer = MPNetTokenizer.from_pretrained('mpnet-base') model = MPNetForSequenceClassification.from_pretrained('mpnet-base') inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!") inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} outputs = model(**inputs) logits = outputs[0] """ _, pooled_output = self.mpnet(input_ids, position_ids=position_ids, attention_mask=attention_mask) pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) return logits
[文档]class MPNetForMultipleChoice(MPNetPretrainedModel): """ MPNet Model with a linear layer on top of the hidden-states output layer, designed for multiple choice tasks like RocStories/SWAG tasks. Args: mpnet (:class:`MPNetModel`): An instance of MPNetModel. num_choices (int, optional): The number of choices. Defaults to `2`. dropout (float, optional): The dropout probability for output of MPNet. If None, use the same value as `hidden_dropout_prob` of `MPNetModel` instance `mpnet`. Defaults to None. """ def __init__(self, mpnet, num_choices=2, dropout=None): super(MPNetForMultipleChoice, self).__init__() self.num_choices = num_choices self.mpnet = mpnet self.dropout = nn.Dropout(dropout if dropout is not None else self.mpnet.config["hidden_dropout_prob"]) self.classifier = nn.Linear(self.mpnet.config["hidden_size"], 1) self.apply(self.init_weights)
[文档] def forward(self, input_ids, position_ids=None, attention_mask=None): r""" The MPNetForMultipleChoice forward method, overrides the __call__() special method. Args: input_ids (Tensor): See :class:`MPNetModel` and shape as [batch_size, num_choice, sequence_length]. position_ids(Tensor, optional): See :class:`MPNetModel` and shape as [batch_size, num_choice, sequence_length]. attention_mask (list, optional): See :class:`MPNetModel` and shape as [batch_size, num_choice, sequence_length]. Returns: Tensor: Returns tensor `reshaped_logits`, a tensor of the multiple choice classification logits. Shape as `[batch_size, num_choice]` and dtype as `float32`. Example: .. code-block:: import paddle from paddlenlp.transformers import MPNetForMultipleChoice, MPNetTokenizer tokenizer = MPNetTokenizer.from_pretrained('mpnet-base') model = MPNetForMultipleChoice.from_pretrained('mpnet-base') inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!") inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} logits = model(**inputs) """ # input_ids: [bs, num_choice, seq_l] input_ids = input_ids.reshape(shape=(-1, input_ids.shape[-1])) # flat_input_ids: [bs*num_choice,seq_l] if position_ids is not None: position_ids = position_ids.reshape(shape=(-1, position_ids.shape[-1])) if attention_mask is not None: attention_mask = attention_mask.reshape(shape=(-1, attention_mask.shape[-1])) _, pooled_output = self.mpnet(input_ids, position_ids=position_ids, attention_mask=attention_mask) pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) # logits: (bs*num_choice,1) reshaped_logits = logits.reshape(shape=(-1, self.num_choices)) # logits: (bs, num_choice) return reshaped_logits
[文档]class MPNetForTokenClassification(MPNetPretrainedModel): """ MPNet Model with a linear layer on top of the hidden-states output layer, designed for token classification tasks like NER tasks. Args: mpnet (:class:`MPNetModel`): An instance of MPNetModel. num_classes (int, optional): The number of classes. Defaults to `2`. dropout (float, optional): The dropout probability for output of MPNet. If None, use the same value as `hidden_dropout_prob` of `MPNetModel` instance `mpnet`. Defaults to None. """ def __init__(self, mpnet, num_classes=2, dropout=None): super(MPNetForTokenClassification, self).__init__() self.num_classes = num_classes self.mpnet = mpnet self.dropout = nn.Dropout(dropout if dropout is not None else self.mpnet.config["hidden_dropout_prob"]) self.classifier = nn.Linear(self.mpnet.config["hidden_size"], num_classes) self.apply(self.init_weights)
[文档] def forward(self, input_ids, position_ids=None, attention_mask=None): r""" The MPNetForTokenClassification forward method, overrides the __call__() special method. Args: input_ids (Tensor): See :class:`MPNetModel`. position_ids(Tensor, optional): See :class:`MPNetModel`. attention_mask (list, optional): See :class:`MPNetModel`. Returns: Tensor: Returns tensor `logits`, a tensor of the input token classification logits. Shape as `[batch_size, sequence_length, num_classes]` and dtype as `float32`. Example: .. code-block:: import paddle from paddlenlp.transformers import MPNetForTokenClassification, MPNetTokenizer tokenizer = MPNetTokenizer.from_pretrained('mpnet-base') model = MPNetForTokenClassification.from_pretrained('mpnet-base') inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!") inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} logits = model(**inputs) """ sequence_output, _ = self.mpnet(input_ids, position_ids=position_ids, attention_mask=attention_mask) sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) return logits
[文档]class MPNetForQuestionAnswering(MPNetPretrainedModel): """ MPNet Model with a linear layer on top of the hidden-states output to compute `span_start_logits` and `span_end_logits`, designed for question-answering tasks like SQuAD. Args: mpnet (:class:`MPNetModel`): An instance of MPNetModel. num_classes (int, optional): The number of classes. Defaults to `2`. """ def __init__(self, mpnet, num_classes=2): super(MPNetForQuestionAnswering, self).__init__() self.mpnet = mpnet self.num_classes = num_classes self.qa_outputs = nn.Linear(self.mpnet.config["hidden_size"], num_classes) self.apply(self.init_weights)
[文档] def forward(self, input_ids, position_ids=None, attention_mask=None): r""" The MPNetForQuestionAnswering forward method, overrides the __call__() special method. Args: input_ids (Tensor): See :class:`MPNetModel`. position_ids (Tensor, optional): See :class:`MPNetModel`. attention_mask (Tensor, optional): See :class:`MPNetModel`. Returns: tuple: Returns tuple (`start_logits`, `end_logits`). With the fields: - `start_logits` (Tensor): A tensor of the input token classification logits, indicates the start position of the labelled span. Its data type should be float32 and its shape is [batch_size, sequence_length]. - `end_logits` (Tensor): A tensor of the input token classification logits, indicates the end position of the labelled span. Its data type should be float32 and its shape is [batch_size, sequence_length]. Example: .. code-block:: import paddle from paddlenlp.transformers import MPNetForQuestionAnswering, MPNetTokenizer tokenizer = MPNetTokenizer.from_pretrained('mpnet-base') model = MPNetForQuestionAnswering.from_pretrained('mpnet-base') inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!") inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()} outputs = model(**inputs) start_logits = outputs[0] end_logits = outputs[1] """ sequence_output, _ = self.mpnet(input_ids, position_ids=position_ids, attention_mask=attention_mask) logits = self.qa_outputs(sequence_output) logits = paddle.transpose(logits, perm=[2, 0, 1]) start_logits, end_logits = paddle.unstack(x=logits, axis=0) return start_logits, end_logits