# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for LayoutXLM model."""
import itertools
from dataclasses import dataclass, field
from collections import OrderedDict
from typing import List, Optional
import sentencepiece as spm
from .. import PretrainedTokenizer, AddedToken
from ..tokenizer_utils import _is_punctuation, _is_control, _is_whitespace
SPIECE_UNDERLINE = "▁"
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"layoutxlm-base-uncased": 514,
# FIXME(wj-Mcat): why this model-name not in the init-configuration
# "layoutxlm-wo-backbone-base-uncased": 514
}
def _is_end_of_word(text):
"""Checks whether the last character in text is one of a punctuation, control or whitespace character."""
last_char = text[-1]
return bool(_is_control(last_char) | _is_punctuation(last_char) | _is_whitespace(last_char))
def _is_start_of_word(text):
"""Checks whether the first character in text is one of a punctuation, control or whitespace character."""
first_char = text[0]
return bool(_is_control(first_char) | _is_punctuation(first_char) | _is_whitespace(first_char))
[文档]class LayoutXLMTokenizer(PretrainedTokenizer):
resource_files_names = {"vocab_file": "sentencepiece.bpe.model"}
pretrained_resource_files_map = {
"vocab_file": {
"layoutxlm-base-uncased": "https://bj.bcebos.com/paddlenlp/models/transformers/layoutxlm_base/sentencepiece.bpe.model",
}
}
pretrained_init_configuration = {
"layoutxlm-base-uncased": {"do_lower_case": False},
}
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
SPECIAL_TOKENS_ATTRIBUTES = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
"additional_special_tokens",
]
def __init__(
self,
vocab_file,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
**kwargs
):
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
self._bos_token = bos_token
self._eos_token = eos_token
self._sep_token = sep_token
self._cls_token = cls_token
self._unk_token = unk_token
self._pad_token = pad_token
self._mask_token = mask_token
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(vocab_file)
self.vocab_file = vocab_file
self.tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
self.offset = 1
self.tokens_to_ids["<mask>"] = len(self.sp_model) + self.offset
self.ids_to_tokens = {v: k for k, v in self.tokens_to_ids.items()}
[文档] def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model."
)
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
[文档] def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
@property
def vocab_size(self):
return len(self.sp_model) + self.offset + 1 # Add the <mask> token
[文档] def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text):
return self.sp_model.EncodeAsPieces(text)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if token in self.tokens_to_ids:
return self.tokens_to_ids[token]
spm_id = self.sp_model.PieceToId(token)
# Need to return unknown token if the SP model returned 0
return spm_id + self.offset if spm_id else self.unk_token_id
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
if index in self.ids_to_tokens:
return self.ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.offset)
[文档] def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
return out_string
[文档] def num_special_tokens_to_add(self, pair=False):
token_ids_0 = []
token_ids_1 = []
return len(self.build_inputs_with_special_tokens(token_ids_0, token_ids_1 if pair else None))