# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2021 Google Research and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import List, Optional, Tuple
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import Tensor
from paddle.nn import Dropout, Layer, LayerList, LayerNorm, Linear
from paddlenlp.transformers import create_bigbird_rand_mask_idx_list
from ...utils.env import CONFIG_NAME
from .. import PretrainedModel, register_base_model
from ..activations import ACT2FN
from ..attention_utils import MultiHeadAttention, _convert_param_attr_to_list
from ..model_outputs import (
BaseModelOutputWithPoolingAndCrossAttentions,
MaskedLMOutput,
ModelOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from .configuration import (
BIGBIRD_PRETRAINED_INIT_CONFIGURATION,
BIGBIRD_PRETRAINED_RESOURCE_FILES_MAP,
BigBirdConfig,
)
__all__ = [
"BigBirdModel",
"BigBirdPretrainedModel",
"BigBirdForPretraining",
"BigBirdPretrainingCriterion",
"BigBirdForSequenceClassification",
"BigBirdPretrainingHeads",
"BigBirdForQuestionAnswering",
"BigBirdForTokenClassification",
"BigBirdForMultipleChoice",
"BigBirdForMaskedLM",
"BigBirdForCausalLM",
]
BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/bigbird-roberta-base",
"google/bigbird-roberta-large",
"google/bigbird-base-trivia-itc",
]
@dataclass
class BigBirdEncoderLayerOutput(ModelOutput):
src: Optional[Tuple[paddle.Tensor]] = None
attn_output: Optional[Tuple[paddle.Tensor]] = None
class TransformerEncoderLayer(Layer):
def __init__(self, config: BigBirdConfig):
super(TransformerEncoderLayer, self).__init__()
self.config = config
attn_dropout = config.dropout if config.attn_dropout is None else config.attn_dropout
act_dropout = config.dropout if config.act_dropout is None else config.act_dropout
self.normalize_before = config.normalize_before
weight_attrs = _convert_param_attr_to_list(config.weight_attr, 2)
bias_attrs = _convert_param_attr_to_list(config.bias_attr, 2)
self.self_attn = MultiHeadAttention(
config.d_model,
config.nhead,
dropout=attn_dropout,
weight_attr=weight_attrs[0],
bias_attr=bias_attrs[0],
attention_type=config.attention_type,
block_size=config.block_size,
window_size=config.window_size,
num_global_blocks=config.num_global_blocks,
num_rand_blocks=config.num_rand_blocks,
seed=config.seed,
)
self.linear1 = Linear(config.d_model, config.dim_feedforward, weight_attrs[1], bias_attr=bias_attrs[1])
self.dropout = Dropout(act_dropout, mode="upscale_in_train")
self.linear2 = Linear(config.dim_feedforward, config.d_model, weight_attrs[1], bias_attr=bias_attrs[1])
self.norm1 = LayerNorm(config.d_model, epsilon=1e-12)
self.norm2 = LayerNorm(config.d_model, epsilon=1e-12)
self.dropout1 = Dropout(config.dropout, mode="upscale_in_train")
self.dropout2 = Dropout(config.dropout, mode="upscale_in_train")
self.activation = getattr(F, config.activation)
self.d_model = config.d_model
self.nhead = config.nhead
def forward(self, src, src_mask=None, rand_mask_idx=None, query_mask=None, key_mask=None):
residual = src
if self.normalize_before:
src = self.norm1(src)
src = self.self_attn(src, src, src, src_mask, rand_mask_idx, query_mask, key_mask)
attn_output = paddle.reshape(x=src, shape=[src.shape[0], src.shape[1], self.nhead, -1])
attn_output = paddle.transpose(attn_output, perm=[0, 2, 1, 3])
src = residual + self.dropout1(src)
if not self.normalize_before:
src = self.norm1(src)
residual = src
if self.normalize_before:
src = self.norm2(src)
src = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = residual + self.dropout2(src)
if not self.normalize_before:
src = self.norm2(src)
return BigBirdEncoderLayerOutput(
src=src,
attn_output=attn_output,
)
@dataclass
class BigBirdEncoderOutput(ModelOutput):
hidden_states: Optional[Tuple[paddle.Tensor]] = None
all_hidden_states: Optional[Tuple[paddle.Tensor]] = None
all_attentions: Optional[Tuple[paddle.Tensor]] = None
class TransformerEncoder(Layer):
def __init__(self, encoder_layer, num_layers):
super(TransformerEncoder, self).__init__()
self.layers = LayerList(
[(encoder_layer if i == 0 else type(encoder_layer)(encoder_layer.config)) for i in range(num_layers)]
)
self.num_layers = num_layers
self.norm = LayerNorm(self.layers[0].d_model, epsilon=1e-12)
self.normalize_before = self.layers[0].normalize_before
def forward(
self,
src,
src_mask_list=None,
rand_mask_idx_list=None,
query_mask=None,
key_mask=None,
output_hidden_states=False,
output_attentions=False,
):
# hidden_states and attention lists to be filled if wished
all_hidden_states = []
all_attentions = []
output = src
if not self.normalize_before:
output = self.norm(output)
hidden_states = output
for i, mod in enumerate(self.layers):
if output_hidden_states is True:
all_hidden_states.append(hidden_states)
rand_mask_id = None
if rand_mask_idx_list is not None:
rand_mask_id = rand_mask_idx_list[i]
if i != 0:
output = mod(output.src, None, rand_mask_id, query_mask, key_mask)
if i == 0:
output = mod(output, None, rand_mask_id, query_mask, key_mask)
hidden_states = output.src
attn_output = output.attn_output
if output_attentions:
all_attentions.append(attn_output)
# Add last layer
if output_hidden_states is True:
all_hidden_states.append(hidden_states)
if self.normalize_before:
output = self.norm(output)
return BigBirdEncoderOutput(
hidden_states=output.src,
all_hidden_states=all_hidden_states,
all_attentions=all_attentions,
)
class BigBirdPooler(Layer):
"""
Pool the result of BigBird Encoder
"""
def __init__(self, hidden_size):
super(BigBirdPooler, self).__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BigBirdEmbeddings(Layer):
"""
Include embeddings from word, position and token_type embeddings
"""
def __init__(self, config: BigBirdConfig):
super(BigBirdEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.padding_idx)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self,
input_ids: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None,
position_ids: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
):
if input_ids is not None:
input_shape = paddle.shape(input_ids)
inputs_embeds = self.word_embeddings(input_ids)
else:
input_shape = paddle.shape(inputs_embeds)[:-1]
if position_ids is None:
ones = paddle.ones(input_shape, dtype="int64")
seq_length = paddle.cumsum(ones, axis=-1)
position_ids = seq_length - ones
position_ids.stop_gradient = True
if token_type_ids is None:
token_type_ids = paddle.zeros(input_shape, dtype="int64")
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
embeddings = self.dropout(embeddings)
return embeddings
[文档]class BigBirdPretrainedModel(PretrainedModel):
"""
An abstract class for pretrained BigBird models. It provides BigBird related
`model_config_file`, `pretrained_init_configuration`, `resource_files_names`,
`pretrained_resource_files_map`, `base_model_prefix` for downloading and
loading pretrained models.
See :class:`~paddlenlp.transformers.model_utils.PretrainedModel` for more details.
"""
pretrained_init_configuration = BIGBIRD_PRETRAINED_INIT_CONFIGURATION
pretrained_resource_files_map = BIGBIRD_PRETRAINED_RESOURCE_FILES_MAP
base_model_prefix = "bigbird"
model_config_file = CONFIG_NAME
config_class = BigBirdConfig
def init_weights(self, layer):
# Initialization hook
if isinstance(layer, (nn.Linear, nn.Embedding)):
# In the dygraph mode, use the `set_value` to reset the parameter directly,
# and reset the `state_dict` to update parameter in static mode.
if isinstance(layer.weight, paddle.Tensor):
layer.weight.set_value(
paddle.tensor.normal(
mean=0.0,
std=self.initializer_range
if hasattr(self, "initializer_range")
else self.bigbird.config["initializer_range"],
shape=layer.weight.shape,
)
)
elif isinstance(layer, nn.LayerNorm):
layer._epsilon = 1e-12
[文档]@register_base_model
class BigBirdModel(BigBirdPretrainedModel):
"""
The bare BigBird Model outputting raw hidden-states.
This model inherits from :class:`~paddlenlp.transformers.model_utils.PretrainedModel`.
Refer to the superclass documentation for the generic methods.
This model is also a Paddle `paddle.nn.Layer <https://www.paddlepaddle.org.cn/documentation
/docs/en/api/paddle/fluid/dygraph/layers/Layer_en.html>`__ subclass. Use it as a regular Paddle Layer
and refer to the Paddle documentation for all matter related to general usage and behavior.
Args:
num_layers (int):
Number of hidden layers in the Transformer encoder.
vocab_size (int):
Vocabulary size of `inputs_ids` in `BigBirdModel`. Also is the vocab size of token embedding matrix.
Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling `BigBirdModel`.
nhead (int):
Number of attention heads for each attention layer in the Transformer encoder.
attn_dropout (float, optional):
The dropout probability used in MultiHeadAttention in all encoder layers to drop some attention target.
Defaults to `0.1`.
dim_feedforward (int, optional):
Dimensionality of the feed-forward (ff) layer in the Transformer encoder. Input tensors
to ff layers are firstly projected from `hidden_size` to `intermediate_size`,
and then projected back to `hidden_size`. Typically `intermediate_size` is larger than `hidden_size`.
Defaults to `3072`.
activation (str, optional):
The non-linear activation function in the feed-forward layer.
``"gelu"``, ``"relu"``, ``"silu"`` and ``"gelu_new"`` are supported.
Defaults to `"gelu"`.
normalize_before (bool, optional):
Indicates whether to put layer normalization into preprocessing of MHA and FFN sub-layers.
If True, pre-process is layer normalization and post-precess includes dropout,
residual connection. Otherwise, no pre-process and post-precess includes dropout,
residual connection, layer normalization.
Defaults to `False`.
block_size (int, optional):
The block size for the attention mask.
Defaults to `1`.
window_size (int, optional):
The number of block in a window.
Defaults to `3`.
num_global_blocks (int, optional):
Number of global blocks per sequence.
Defaults to `1`.
num_rand_blocks (int, optional):
Number of random blocks per row.
Defaults to `2`.
seed (int, optional):
The random seed for generating random block id.
Defaults to ``None``.
pad_token_id (int, optional):
The index of padding token for BigBird embedding.
Defaults to ``0``.
hidden_size (int, optional):
Dimensionality of the embedding layer, encoder layer and pooler layer.
Defaults to `768`.
hidden_dropout_prob (float, optional):
The dropout probability for all fully connected layers in the embeddings and encoder.
Defaults to `0.1`.
max_position_embeddings (int, optional):
The maximum value of the dimensionality of position encoding, which dictates the maximum supported length of an input
sequence. Defaults to `512`.
type_vocab_size (int, optional):
The vocabulary size of the `token_type_ids`.
Defaults to `2`.
"""
def __init__(self, config: BigBirdConfig):
super(BigBirdModel, self).__init__(config)
# embedding
self.embeddings = BigBirdEmbeddings(config)
# encoder
encoder_layer = TransformerEncoderLayer(config)
self.encoder = TransformerEncoder(encoder_layer, config.num_layers)
# pooler
self.pooler = BigBirdPooler(config.hidden_size)
self.pad_token_id = config.pad_token_id
self.num_layers = config.num_layers
self.config = config
def _process_mask(self, input_ids, inputs_embeds, attention_mask=None):
# [B, T]
if input_ids is not None:
attention_mask = (input_ids == self.pad_token_id).astype(self.pooler.dense.weight.dtype)
else:
input_shape = paddle.shape(inputs_embeds)[:-1]
attention_mask = paddle.zeros(input_shape, dtype=self.pooler.dense.weight.dtype)
# [B, 1, T, 1]
query_mask = paddle.unsqueeze(attention_mask, axis=[1, 3])
# [B, 1, 1, T]
key_mask = paddle.unsqueeze(attention_mask, axis=[1, 2])
query_mask = 1 - query_mask
key_mask = 1 - key_mask
return attention_mask, query_mask, key_mask
[文档] def forward(
self,
input_ids: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
rand_mask_idx_list: Optional[List] = None,
inputs_embeds: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
The BigBirdModel forward method, overrides the __call__() special method.
Args:
input_ids (`Tensor`):
Indices of input sequence tokens in the vocabulary.
Its data type should be `int64` and it has a shape of [batch_size, sequence_length].
token_type_ids (`Tensor`, optional):
Segment token indices to indicate first and second portions of the inputs.
Indices can either be 0 or 1:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
Its data type should be `int64` and it has a shape of [batch_size, sequence_length].
Defaults to ``None``, which means we don't add segment embeddings.
inputs_embeds (Tensor, optional):
If you want to control how to convert `inputs_ids` indices into associated vectors, you can
pass an embedded representation directly instead of passing `inputs_ids`.
attention_mask (Tensor, optional):
Mask used in multi-head attention to avoid performing attention on to some unwanted positions,
usually the paddings or the subsequent positions.
Its data type can be int, float and bool.
When the data type is bool, the `masked` tokens have `False` values and the others have `True` values.
When the data type is int, the `masked` tokens have `0` values and the others have `1` values.
When the data type is float, the `masked` tokens have `-INF` values and the others have `0` values.
It is a tensor with shape broadcasted to `[batch_size, num_attention_heads, sequence_length, sequence_length]`.
For example, its shape can be [batch_size, sequence_length], [batch_size, sequence_length, sequence_length],
[batch_size, num_attention_heads, sequence_length, sequence_length].
We use whole-word-mask in ERNIE, so the whole word will have the same value. For example, "使用" as a word,
"使" and "用" will have the same value.
Defaults to `None`, which means nothing needed to be prevented attention to.
rand_mask_idx_list (`list`, optional):
A list which contains some tensors used in bigbird random block.
return_dict (bool, optional):
Whether to return a :class:`~paddlenlp.transformers.model_outputs.ModelOutput` object. If `False`, the output
will be a tuple of tensors. Defaults to `False`.
Returns:
An instance of :class:`~paddlenlp.transformers.model_outputs.BaseModelOutputWithPoolingAndCrossAttentions` if
`return_dict=True`. Otherwise it returns a tuple of tensors corresponding
to ordered and not None (depending on the input arguments) fields of
:class:`~paddlenlp.transformers.model_outputs.BaseModelOutputWithPoolingAndCrossAttentions`.
Examples:
.. code-block::
import paddle
from paddlenlp.transformers import BigBirdModel, BigBirdTokenizer
from paddlenlp.transformers import create_bigbird_rand_mask_idx_list
tokenizer = BigBirdTokenizer.from_pretrained('bigbird-base-uncased')
model = BigBirdModel.from_pretrained('bigbird-base-uncased')
config = model.config
max_seq_len = 512
input_ids = tokenizer.convert_tokens_to_ids(
tokenizer(
"This is a docudrama story on the Lindy Chamberlain case and a look at "
"its impact on Australian society It especially looks at the problem of "
"innuendo gossip and expectation when dealing with reallife dramasbr br "
"One issue the story deals with is the way it is expected people will all "
"give the same emotional response to similar situations Not everyone goes "
"into wild melodramatic hysterics to every major crisis Just because the "
"characters in the movies and on TV act in a certain way is no reason to "
"expect real people to do so"
))
input_ids.extend([0] * (max_seq_len - len(input_ids)))
seq_len = len(input_ids)
input_ids = paddle.to_tensor([input_ids])
rand_mask_idx_list = create_bigbird_rand_mask_idx_list(
config["num_layers"], seq_len, seq_len, config["nhead"],
config["block_size"], config["window_size"], config["num_global_blocks"],
config["num_rand_blocks"], config["seed"])
rand_mask_idx_list = [
paddle.to_tensor(rand_mask_idx) for rand_mask_idx in rand_mask_idx_list
]
output = model(input_ids, rand_mask_idx_list=rand_mask_idx_list)
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.shape
elif inputs_embeds is not None:
input_shape = inputs_embeds.shape[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
output_attentions = output_attentions if output_attentions is not None else False
output_hidden_states = output_hidden_states if output_hidden_states is not None else False
return_dict = return_dict if return_dict is not None else False
embedding_output = self.embeddings(input_ids, token_type_ids, inputs_embeds=inputs_embeds)
attention_mask, query_mask, key_mask = self._process_mask(input_ids, inputs_embeds, attention_mask)
batch_size, seq_len = input_shape
rand_mask_idx_list = create_bigbird_rand_mask_idx_list(
self.config["num_layers"],
seq_len,
seq_len,
self.config["nhead"],
self.config["block_size"],
self.config["window_size"],
self.config["num_global_blocks"],
self.config["num_rand_blocks"],
self.config["seed"],
)
rand_mask_idx_list = [paddle.to_tensor(rand_mask_idx) for rand_mask_idx in rand_mask_idx_list]
encoder_outputs = self.encoder(
embedding_output,
attention_mask,
rand_mask_idx_list,
query_mask,
key_mask,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
)
sequence_output = encoder_outputs.hidden_states
hidden_states = encoder_outputs.all_hidden_states if output_hidden_states else None
attentions = encoder_outputs.all_attentions if output_attentions else None
pooled_output = self.pooler(encoder_outputs.hidden_states)
if not return_dict:
return sequence_output, pooled_output
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=hidden_states,
attentions=attentions,
)
[文档]class BigBirdForSequenceClassification(BigBirdPretrainedModel):
"""
BigBird Model with a linear layer on top of the output layer,
designed for sequence classification/regression tasks like GLUE tasks.
Args:
bigbird (:class:`BigBirdModel`):
An instance of :class:`BigBirdModel`.
num_classes (int, optional):
The number of classes. Defaults to `None`.
"""
def __init__(self, config: BigBirdConfig):
super(BigBirdForSequenceClassification, self).__init__(config)
self.num_classes = config.num_classes
self.config = config
self.bigbird = BigBirdModel(config)
self.linear = nn.Linear(config.hidden_size, self.num_classes)
self.dropout = nn.Dropout(config.hidden_dropout_prob, mode="upscale_in_train")
self.apply(self.init_weights)
[文档] def forward(
self,
input_ids: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
rand_mask_idx_list: Optional[List] = None,
inputs_embeds: Optional[Tensor] = None,
labels: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
The BigBirdForSequenceClassification forward method, overrides the __call__() special method.
Args:
input_ids (Tensor):
See :class:`BigBirdModel`.
token_type_ids (Tensor):
See :class:`BigBirdModel`.
attention_mask (Tensor):
See :class:`BigBirdModel`.
rand_mask_idx_list (list):
See :class:`BigBirdModel`.
inputs_embeds(Tensor, optional):
See :class:`BigBirdModel`.
labels (Tensor of shape `(batch_size,)`, optional):
Labels for computing the sequence classification/regression loss.
Indices should be in `[0, ..., num_labels - 1]`. If `num_labels == 1`
a regression loss is computed (Mean-Square loss), If `num_labels > 1`
a classification loss is computed (Cross-Entropy).
output_hidden_states (bool, optional):
Whether to return the hidden states of all layers.
Defaults to `None`.
output_attentions (bool, optional):
Whether to return the attentions tensors of all attention layers.
Defaults to `None`.
return_dict (bool, optional):
Whether to return a :class:`~paddlenlp.transformers.model_outputs.SequenceClassifierOutput` object. If
`False`, the output will be a tuple of tensors. Defaults to `None`.
Returns:
Tensor: Returns tensor `output`, a tensor of the input text classification logits.
Its data type should be float32 and it has a shape of [batch_size, num_classes].
Examples:
.. code-block::
import paddle
from paddlenlp.transformers import BigBirdForSequenceClassification, BigBirdTokenizer
from paddlenlp.transformers import create_bigbird_rand_mask_idx_list
tokenizer = BigBirdTokenizer.from_pretrained('bigbird-base-uncased')
model = BigBirdForSequenceClassification.from_pretrained('bigbird-base-uncased')
config = model.bigbird.config
max_seq_len = 512
input_ids = tokenizer.convert_tokens_to_ids(
tokenizer(
"This is a docudrama story on the Lindy Chamberlain case and a look at "
"its impact on Australian society It especially looks at the problem of "
"innuendo gossip and expectation when dealing with reallife dramasbr br "
"One issue the story deals with is the way it is expected people will all "
"give the same emotional response to similar situations Not everyone goes "
"into wild melodramatic hysterics to every major crisis Just because the "
"characters in the movies and on TV act in a certain way is no reason to "
"expect real people to do so"
))
input_ids.extend([0] * (max_seq_len - len(input_ids)))
seq_len = len(input_ids)
input_ids = paddle.to_tensor([input_ids])
rand_mask_idx_list = create_bigbird_rand_mask_idx_list(
config["num_layers"], seq_len, seq_len, config["nhead"],
config["block_size"], config["window_size"], config["num_global_blocks"],
config["num_rand_blocks"], config["seed"])
rand_mask_idx_list = [
paddle.to_tensor(rand_mask_idx) for rand_mask_idx in rand_mask_idx_list
]
output = model(input_ids, rand_mask_idx_list=rand_mask_idx_list)
print(output)
"""
outputs = self.bigbird(
input_ids,
token_type_ids,
attention_mask=attention_mask,
rand_mask_idx_list=rand_mask_idx_list,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.linear(pooled_output)
loss = None
if labels is not None:
if self.num_labels == 1:
loss_fct = paddle.nn.MSELoss()
loss = loss_fct(logits, labels)
elif labels.dtype == paddle.int64 or labels.dtype == paddle.int32:
loss_fct = paddle.nn.CrossEntropyLoss()
loss = loss_fct(logits.reshape((-1, self.num_labels)), labels.reshape((-1,)))
else:
loss_fct = paddle.nn.BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else (output[0] if len(output) == 1 else output)
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class BigBirdLMPredictionHead(Layer):
def __init__(self, config: BigBirdConfig):
super(BigBirdLMPredictionHead, self).__init__()
self.transform = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = getattr(nn.functional, config.activation)
self.layer_norm = nn.LayerNorm(config.hidden_size, epsilon=1e-12)
self.decoder_weight = (
self.create_parameter(
shape=[config.vocab_size, config.hidden_size], dtype=self.transform.weight.dtype, is_bias=False
)
if config.embedding_weights is None
else config.embedding_weights
)
self.decoder_bias = self.create_parameter(
shape=[config.vocab_size], dtype=self.decoder_weight.dtype, is_bias=True
)
def forward(self, hidden_states, masked_positions=None):
if masked_positions is not None:
hidden_states = paddle.reshape(hidden_states, [-1, hidden_states.shape[-1]])
hidden_states = paddle.tensor.gather(hidden_states, masked_positions)
# gather masked tokens might be more quick
hidden_states = self.transform(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.layer_norm(hidden_states)
hidden_states = paddle.tensor.matmul(hidden_states, self.decoder_weight, transpose_y=True) + self.decoder_bias
return hidden_states
[文档]class BigBirdPretrainingHeads(Layer):
"""
The BigBird pretraining heads for a pretraining task.
Args:
hidden_size (int):
See :class:`BigBirdModel`.
vocab_size (int):
See :class:`BigBirdModel`.
activation (str):
See :class:`BigBirdModel`.
embedding_weights (Tensor, optional):
The weight of pretraining embedding layer. Its data type should be float32
and its shape is [hidden_size, vocab_size].
If set to `None`, use normal distribution to initialize weight.
Defaults to `None`.
"""
def __init__(self, config: BigBirdConfig):
super(BigBirdPretrainingHeads, self).__init__()
self.predictions = BigBirdLMPredictionHead(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
[文档] def forward(self, sequence_output, pooled_output, masked_positions=None):
r"""
The BigBirdPretrainingHeads forward method, overrides the __call__() special method.
Args:
sequence_output (Tensor):
The sequence output of BigBirdModel. Its data type should be float32 and
has a shape of [batch_size, sequence_length, hidden_size].
pooled_output (Tensor):
The pooled output of BigBirdModel. Its data type should be float32 and
has a shape of [batch_size, hidden_size].
masked_positions (Tensor):
A tensor indicates positions to be masked in the position embedding.
Its data type should be int64 and its shape is [batch_size, mask_token_num].
`mask_token_num` is the number of masked tokens. It should be no bigger than `sequence_length`.
Defaults to `None`, which means we output hidden-states of all tokens in masked token prediction.
Returns:
tuple: (``prediction_scores``, ``seq_relationship_score``).
With the fields:
- prediction_scores (Tensor):
The scores of masked token prediction. Its data type should be float32.
If `masked_positions` is None, its shape is [batch_size, sequence_length, vocab_size].
Otherwise, its shape is [batch_size, mask_token_num, vocab_size].
- seq_relationship_score (Tensor):
The logits whether 2 sequences are NSP relationship. Its data type should be float32 and
has a shape of [batch_size, 2].
"""
prediction_scores = self.predictions(sequence_output, masked_positions)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
@dataclass
class BigBirdForPreTrainingOutput(ModelOutput):
"""
Output type of [`BertForPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `paddle.Tensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
prediction_logits (`paddle.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (`paddle.Tensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(paddle.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `paddle.Tensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(paddle.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `paddle.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[paddle.Tensor] = None
prediction_logits: paddle.Tensor = None
seq_relationship_logits: paddle.Tensor = None
hidden_states: Optional[Tuple[paddle.Tensor]] = None
attentions: Optional[Tuple[paddle.Tensor]] = None
[文档]class BigBirdForPretraining(BigBirdPretrainedModel):
"""
BigBird Model with pretraining tasks on top.
Args:
bigbird (:class:`BigBirdModel`):
An instance of :class:`BigBirdModel`.
"""
def __init__(self, config: BigBirdConfig):
super(BigBirdForPretraining, self).__init__(config)
self.bigbird = BigBirdModel(config)
self.cls = BigBirdPretrainingHeads(config)
self.apply(self.init_weights)
[文档] def forward(
self,
input_ids: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None,
position_ids: Optional[Tensor] = None,
rand_mask_idx_list: Optional[List] = None,
masked_positions: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
rand_mask: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
labels: Optional[Tensor] = None,
next_sentence_label: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
The BigBirdForPretraining forward method, overrides the __call__() special method.
Args:
input_ids (Tensor):
See :class:`BigBirdModel`.
token_type_ids (Tensor):
See :class:`BigBirdModel`.
attention_mask (Tensor):
See :class:`BigBirdModel`.
rand_mask_idx_list (list):
See :class:`BigBirdModel`.
masked_positions (list):
A tensor indicates positions to be masked in the position embedding.
Its data type should be int64 and its shape is [batch_size, mask_token_num].
`mask_token_num` is the number of masked tokens. It should be no bigger than `sequence_length`.
Defaults to `None`, which means we output hidden-states of all tokens in masked token prediction.
inputs_embeds(Tensor, optional):
See :class:`BigBirdModel`.
output_hidden_states (bool, optional):
Whether to return the hidden states of all layers.
Defaults to `None`.
output_attentions (bool, optional):
Whether to return the attentions tensors of all attention layers.
Defaults to `None`.
return_dict (bool, optional):
Whether to return a :class:`~paddlenlp.transformers.bert.BertForPreTrainingOutput` object. If
`False`, the output will be a tuple of tensors. Defaults to `None`.
Returns:
An instance of :class:`~paddlenlp.transformers.bert.BertForPreTrainingOutput` if `return_dict=True`.
Otherwise it returns a tuple of tensors corresponding to ordered and
not None (depending on the input arguments) fields of :class:`~paddlenlp.transformers.bert.BertForPreTrainingOutput`.
Examples:
.. code-block::
import paddle
from paddlenlp.transformers import BigBirdForPretraining, BigBirdTokenizer
from paddlenlp.transformers import create_bigbird_rand_mask_idx_list
tokenizer = BigBirdTokenizer.from_pretrained('bigbird-base-uncased')
model = BigBirdForPretraining.from_pretrained('bigbird-base-uncased')
config = model.bigbird.config
max_seq_len = 512
input_ids, masked_lm_positions, masked_lm_ids, masked_lm_weights = tokenizer.encode(
"This is a docudrama story on the Lindy Chamberlain case and a look at "
"its impact on Australian society It especially looks at the problem of "
"innuendo gossip and expectation when dealing with reallife dramasbr br "
"One issue the story deals with is the way it is expected people will all "
"give the same emotional response to similar situations Not everyone goes "
"into wild melodramatic hysterics to every major crisis Just because the "
"characters in the movies and on TV act in a certain way is no reason to "
"expect real people to do so", max_seq_len=max_seq_len)
seq_len = len(input_ids)
input_ids = paddle.to_tensor([input_ids])
rand_mask_idx_list = create_bigbird_rand_mask_idx_list(
config["num_layers"], seq_len, seq_len, config["nhead"],
config["block_size"], config["window_size"], config["num_global_blocks"],
config["num_rand_blocks"], config["seed"])
rand_mask_idx_list = [
paddle.to_tensor(rand_mask_idx) for rand_mask_idx in rand_mask_idx_list
]
output = model(input_ids, rand_mask_idx_list=rand_mask_idx_list)
print(output)
"""
outputs = self.bigbird(
input_ids,
token_type_ids=token_type_ids,
attention_mask=None,
rand_mask_idx_list=rand_mask_idx_list,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output, pooled_output = outputs[:2]
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output, masked_positions)
total_loss = None
if labels is not None and next_sentence_label is not None:
loss_fct = paddle.nn.CrossEntropyLoss()
masked_lm_loss = loss_fct(
prediction_scores.reshape((-1, prediction_scores.shape[-1])), labels.reshape((-1,))
)
next_sentence_loss = loss_fct(seq_relationship_score.reshape((-1, 2)), next_sentence_label.reshape((-1,)))
total_loss = masked_lm_loss + next_sentence_loss
if not return_dict:
output = (prediction_scores, seq_relationship_score) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return BigBirdForPreTrainingOutput(
loss=total_loss,
prediction_logits=prediction_scores,
seq_relationship_logits=seq_relationship_score,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
[文档]class BigBirdPretrainingCriterion(paddle.nn.Layer):
"""
BigBird Criterion for a pretraining task on top.
Args:
vocab_size (int):
See :class:`BigBirdModel`.
use_nsp (bool, optional):
It decides whether it considers Next Sentence Prediction loss.
Defaults to `False`.
ignore_index (int):
Specifies a target value that is ignored and does
not contribute to the input gradient. Only valid
if :attr:`soft_label` is set to :attr:`False`.
Defaults to `0`.
"""
def __init__(self, config: BigBirdConfig, use_nsp=False, ignore_index=0):
super(BigBirdPretrainingCriterion, self).__init__()
# CrossEntropyLoss is expensive since the inner reshape (copy)
self.loss_fn = paddle.nn.loss.CrossEntropyLoss(ignore_index=-1)
self.vocab_size = config.vocab_size
self.use_nsp = use_nsp
self.ignore_index = ignore_index
[文档] def forward(
self,
prediction_scores,
seq_relationship_score,
masked_lm_labels,
next_sentence_labels,
masked_lm_scale,
masked_lm_weights,
):
r"""
The BigBirdPretrainingCriterion forward method, overrides the __call__() special method.
Args:
prediction_scores (Tensor):
The scores of masked token prediction. Its data type should be float32.
If `masked_positions` is None, its shape is [batch_size, sequence_length, vocab_size].
Otherwise, its shape is [batch_size, mask_token_num, vocab_size].
seq_relationship_score (Tensor):
The scores of next sentence prediction.
Its data type should be float32 and its shape is [batch_size, 2].
masked_lm_labels (Tensor):
The labels of the masked language modeling, its dimensionality is equal to `prediction_scores`.
Its data type should be int64. If `masked_positions` is None, its shape is [batch_size, sequence_length, 1].
Otherwise, its shape is [batch_size, mask_token_num, 1].
next_sentence_labels (Tensor):
The labels of the next sentence prediction task, the dimensionality of `next_sentence_labels`
is equal to `seq_relation_labels`. Its data type should be int64 and its shape is [batch_size, 1].
masked_lm_scale (Tensor or int):
The scale of masked tokens. Used for the normalization of masked language modeling loss.
If it is a `Tensor`, its data type should be int64 and its shape is equal to `prediction_scores`.
masked_lm_weights (Tensor):
The weight of masked tokens. Its data type should be float32 and its shape
is [mask_token_num, 1].
Returns:
Tensor: The pretraining loss, equals to the sum of `masked_lm_loss` plus the mean of `next_sentence_loss`.
Its data type should be float32 and its shape is [1].
Example:
.. code-block::
import numpy as np
import paddle
from paddlenlp.transformers import BigBirdForPretraining, BigBirdTokenizer, BigBirdPretrainingCriterion
from paddlenlp.transformers import create_bigbird_rand_mask_idx_list
tokenizer = BigBirdTokenizer.from_pretrained('bigbird-base-uncased')
model = BigBirdForPretraining.from_pretrained('bigbird-base-uncased')
config = model.bigbird.config
criterion = BigBirdPretrainingCriterion(config["vocab_size"], False)
max_seq_len = 512
max_pred_length=75
input_ids, masked_lm_positions, masked_lm_ids, masked_lm_weights = tokenizer.encode(
"This is a docudrama story on the Lindy Chamberlain case and a look at "
"its impact on Australian society It especially looks at the problem of "
"innuendo gossip and expectation when dealing with reallife dramasbr br "
"One issue the story deals with is the way it is expected people will all "
"give the same emotional response to similar situations Not everyone goes "
"into wild melodramatic hysterics to every major crisis Just because the "
"characters in the movies and on TV act in a certain way is no reason to "
"expect real people to do so", max_seq_len=max_seq_len, max_pred_len=max_pred_length)
seq_len = len(input_ids)
masked_lm_positions_tmp = np.full(seq_len, 0, dtype=np.int32)
masked_lm_ids_tmp = np.full([seq_len, 1], -1, dtype=np.int64)
masked_lm_weights_tmp = np.full([seq_len], 0, dtype="float32")
mask_token_num = 0
for i, x in enumerate([input_ids]):
for j, pos in enumerate(masked_lm_positions):
masked_lm_positions_tmp[mask_token_num] = i * seq_len + pos
masked_lm_ids_tmp[mask_token_num] = masked_lm_ids[j]
masked_lm_weights_tmp[mask_token_num] = masked_lm_weights[j]
masked_lm_positions = masked_lm_positions_tmp
masked_lm_ids = masked_lm_ids_tmp
masked_lm_weights = masked_lm_weights_tmp
print(masked_lm_ids.shape)
input_ids = paddle.to_tensor([input_ids])
masked_lm_positions = paddle.to_tensor(masked_lm_positions)
masked_lm_ids = paddle.to_tensor(masked_lm_ids, dtype='int64')
masked_lm_weights = paddle.to_tensor(masked_lm_weights)
masked_lm_scale = 1.0
next_sentence_labels = paddle.zeros(shape=(1, 1), dtype='int64')
rand_mask_idx_list = create_bigbird_rand_mask_idx_list(
config["num_layers"], seq_len, seq_len, config["nhead"],
config["block_size"], config["window_size"], config["num_global_blocks"],
config["num_rand_blocks"], config["seed"])
rand_mask_idx_list = [
paddle.to_tensor(rand_mask_idx) for rand_mask_idx in rand_mask_idx_list
]
prediction_scores, seq_relationship_score = model(input_ids, rand_mask_idx_list=rand_mask_idx_list, masked_positions=masked_lm_positions)
loss = criterion(prediction_scores, seq_relationship_score,
masked_lm_ids, next_sentence_labels,
masked_lm_scale, masked_lm_weights)
print(loss)
"""
masked_lm_loss = F.cross_entropy(
prediction_scores, masked_lm_labels, ignore_index=self.ignore_index, reduction="none"
)
masked_lm_loss = paddle.transpose(masked_lm_loss, [1, 0])
masked_lm_loss = paddle.sum(masked_lm_loss * masked_lm_weights) / (paddle.sum(masked_lm_weights) + 1e-5)
scale = 1.0
if not self.use_nsp:
scale = 0.0
next_sentence_loss = F.cross_entropy(seq_relationship_score, next_sentence_labels, reduction="none")
return masked_lm_loss + paddle.mean(next_sentence_loss) * scale
class BigBirdIntermediate(Layer):
def __init__(self, config: BigBirdConfig):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.dim_feedforward)
if isinstance(config.activation, str):
self.intermediate_act_fn = ACT2FN[config.activation]
else:
self.intermediate_act_fn = config.activation
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BigBirdOutput(Layer):
def __init__(self, config: BigBirdConfig):
super().__init__()
self.dense = nn.Linear(config.dim_feedforward, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
[文档]class BigBirdForQuestionAnswering(BigBirdPretrainedModel):
"""
BigBird Model with a linear layer on top of the hidden-states output to compute `span_start_logits`
and `span_end_logits`, designed for question-answering tasks like SQuAD.
Args:
bigbird (:class:`BigBirdModel`):
An instance of BigBirdModel.
dropout (float, optional):
The dropout probability for output of BigBirdModel.
If None, use the same value as `hidden_dropout_prob` of `BigBirdModel`
instance `bigbird`. Defaults to `None`.
"""
def __init__(self, config: BigBirdConfig):
super(BigBirdForQuestionAnswering, self).__init__(config)
self.bigbird = BigBirdModel(config) # allow bigbird to be config
self.dropout = nn.Dropout(
config.dropout if config.dropout is not None else self.bigbird.config["hidden_dropout_prob"]
)
self.classifier = nn.Linear(self.bigbird.config["hidden_size"], 2)
self.apply(self.init_weights)
[文档] def forward(
self,
input_ids: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
start_positions: Optional[Tensor] = None,
end_positions: Optional[Tensor] = None,
rand_mask_idx_list: Optional[List] = None,
inputs_embeds: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
The BigBirdForQuestionAnswering forward method, overrides the __call__() special method.
Args:
input_ids (Tensor):
See :class:`BigBirdModel`.
token_type_ids (Tensor, optional):
See :class:`BigBirdModel`.
attention_mask (Tensor):
See :class:`BigBirdModel`.
rand_mask_idx_list (`List`):
See :class:`BigBirdModel`.
inputs_embeds(Tensor, optional):
See :class:`BigBirdModel`.
output_hidden_states (bool, optional):
Whether to return the hidden states of all layers.
Defaults to `None`.
output_attentions (bool, optional):
Whether to return the attentions tensors of all attention layers.
Defaults to `None`.
return_dict (bool, optional):
Whether to return a :class:`~paddlenlp.transformers.model_outputs.QuestionAnsweringModelOutput` object. If
`False`, the output will be a tuple of tensors. Defaults to `None`.
Returns:
An instance of :class:`~paddlenlp.transformers.model_outputs.QuestionAnsweringModelOutput` if `return_dict=True`.
Otherwise it returns a tuple of tensors corresponding to ordered and
not None (depending on the input arguments) fields of :class:`~paddlenlp.transformers.model_outputs.QuestionAnsweringModelOutput`.
Example:
.. code-block::
import paddle
from paddlenlp.transformers.bigbird.modeling import BigBirdForQuestionAnswering
from paddlenlp.transformers.bigbird.tokenizer import BigBirdTokenizer
tokenizer = BigBirdTokenizer.from_pretrained('bigbird-base-uncased')
model = BigBirdForQuestionAnswering.from_pretrained('bigbird-base-uncased')
inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!", return_tensors='pd')
inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()}
outputs = model(**inputs)
start_logits = outputs[0]
end_logits =outputs[1]
"""
output_attentions = output_attentions if output_attentions is not None else False
output_hidden_states = output_hidden_states if output_hidden_states is not None else False
return_dict = return_dict if return_dict is not None else False
outputs = self.bigbird(
input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
rand_mask_idx_list=rand_mask_idx_list,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
logits = paddle.transpose(logits, perm=[2, 0, 1])
start_logits, end_logits = paddle.unstack(x=logits, axis=0)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if start_positions.ndim > 1:
start_positions = start_positions.squeeze(-1)
if start_positions.ndim > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = paddle.shape(start_logits)[1]
start_positions = start_positions.clip(0, ignored_index)
end_positions = end_positions.clip(0, ignored_index)
loss_fct = paddle.nn.CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@staticmethod
def prepare_question_mask(q_lengths, maxlen):
mask = paddle.arange(0, maxlen).unsqueeze_(0)
mask = mask < q_lengths
return mask
[文档]class BigBirdForTokenClassification(BigBirdPretrainedModel):
"""
BigBird Model with a linear layer on top of the hidden-states output layer,
designed for token classification tasks like NER tasks.
Args:
bigbird (:class:`BigBirdModel`):
An instance of BigBirdModel.
num_classes (int, optional):
The number of classes. Defaults to `2`.
dropout (float, optional):
The dropout probability for output of BIGBIRD.
If None, use the same value as `hidden_dropout_prob` of `BigBirdModel`
instance `bigbird`. Defaults to None.
"""
def __init__(self, config: BigBirdConfig):
super(BigBirdForTokenClassification, self).__init__(config)
self.num_classes = config.num_classes
self.bigbird = BigBirdModel(config) # allow bigbird to be config
self.dropout = nn.Dropout(
self.dropout if self.dropout is not None else self.bigbird.config["hidden_dropout_prob"]
)
self.classifier = nn.Linear(self.bigbird.config["hidden_size"], self.num_classes)
self.apply(self.init_weights)
[文档] def forward(
self,
input_ids: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
rand_mask_idx_list: Optional[List] = None,
inputs_embeds: Optional[Tensor] = None,
labels: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
The BigBirdForSequenceClassification forward method, overrides the __call__() special method.
Args:
input_ids (Tensor):
See :class:`BigBirdModel`.
token_type_ids (Tensor, optional):
See :class:`BigBirdModel`.
attention_mask (Tensor):
See :class:`BigBirdModel`.
rand_mask_idx_list (`List`):
See :class:`BigBirdModel`.
labels (Tensor of shape `(batch_size, sequence_length)`, optional):
Labels for computing the token classification loss. Indices should be in `[0, ..., num_labels - 1]`.
inputs_embeds(Tensor, optional):
See :class:`BigBirdModel`.
output_hidden_states (bool, optional):
Whether to return the hidden states of all layers.
Defaults to `None`.
output_attentions (bool, optional):
Whether to return the attentions tensors of all attention layers.
Defaults to `None`.
return_dict (bool, optional):
Whether to return a :class:`~paddlenlp.transformers.model_outputs.TokenClassifierOutput` object. If
Returns:
An instance of :class:`~paddlenlp.transformers.model_outputs.TokenClassifierOutput` if `return_dict=True`.
Otherwise it returns a tuple of tensors corresponding to ordered and
not None (depending on the input arguments) fields of :class:`~paddlenlp.transformers.model_outputs.TokenClassifierOutput`.
Example:
.. code-block::
import paddle
from paddlenlp.transformers.bigbird.modeling import BigBirdForTokenClassification
from paddlenlp.transformers.bigbird.tokenizer import BigBirdTokenizer
tokenizer = BigBirdTokenizer.from_pretrained('bigbird-base-uncased')
model = BigBirdForTokenClassification.from_pretrained('bigbird-base-uncased')
inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!", return_tensors='pd')
inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()}
outputs = model(**inputs)
logits = outputs
"""
output_attentions = output_attentions if output_attentions is not None else False
output_hidden_states = output_hidden_states if output_hidden_states is not None else False
return_dict = return_dict if return_dict is not None else False
outputs = self.bigbird(
input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
rand_mask_idx_list=rand_mask_idx_list,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = paddle.nn.CrossEntropyLoss()
loss = loss_fct(logits.reshape((-1, self.num_labels)), labels.reshape((-1,)))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else (output[0] if len(output) == 1 else output)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
[文档]class BigBirdForCausalLM(BigBirdPretrainedModel):
"""
BigBird Model for casual language model tasks.
Args:
BigBird (:class:`BigBirdModel`):
An instance of :class:`BigBirdModel`.
"""
def __init__(self, config: BigBirdConfig):
super(BigBirdForCausalLM, self).__init__(config)
self.bigbird = BigBirdModel(config)
self.lm_head = BigBirdLMPredictionHead(config)
self.apply(self.init_weights)
[文档] def forward(
self,
input_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
rand_mask_idx_list: Optional[List] = None,
inputs_embeds: Optional[Tensor] = None,
labels: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
input_ids (Tensor):
See :class:`BigBirdModel`.
attention_mask (Tensor):
See :class:`BigBirdModel`.
rand_mask_idx_list (`List`):
See :class:`BigBirdModel`.
inputs_embeds (Tensor, optional):
See :class:`BigBirdModel`.
labels (Tensor, optional):
The Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., vocab_size]`` Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., vocab_size]`` Its shape is [batch_size, sequence_length].
output_hidden_states (bool, optional):
Whether to return the hidden states of all layers.
Defaults to `False`.
output_attentions (bool, optional):
Whether to return the attentions tensors of all attention layers.
Defaults to `False`.
return_dict (bool, optional):
Whether to return a :class:`~paddlenlp.transformers.model_outputs.TokenClassifierOutput` object. If
`False`, the output will be a tuple of tensors. Defaults to `False`.
Returns:
tuple: Returns tuple (`masked_lm_loss`, `prediction_scores`, ``sequence_output`).
With the fields:
- `masked_lm_loss` (Tensor):
The masked lm loss. Its data type should be float32 and its shape is [1].
- `prediction_scores` (Tensor):
The scores of masked token prediction. Its data type should be float32. Its shape is [batch_size, sequence_length, vocab_size].
- `sequence_output` (Tensor):
Sequence of hidden-states at the last layer of the model. Its data type should be float32. Its shape is `[batch_size, sequence_length, hidden_size]`.
"""
output_attentions = output_attentions if output_attentions is not None else False
output_hidden_states = output_hidden_states if output_hidden_states is not None else False
return_dict = return_dict if return_dict is not None else False
outputs = self.bigbird(
input_ids,
attention_mask=attention_mask,
rand_mask_idx_list=rand_mask_idx_list,
inputs_embeds=inputs_embeds,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :]
labels = labels[:, 1:]
loss_fct = nn.CrossEntropyLoss()
lm_loss = loss_fct(
paddle.reshape(shifted_prediction_scores, [-1, self.bigbird.config["vocab_size"]]),
paddle.reshape(labels, [-1]),
)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else (output[0] if len(output) == 1 else output)
return MaskedLMOutput(
loss=lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)